BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 16712017)

  • 1. Exciton formation and annihilation during 1D impact excitation of carbon nanotubes.
    Marty L; Adam E; Albert L; Doyon R; Ménard D; Martel R
    Phys Rev Lett; 2006 Apr; 96(13):136803. PubMed ID: 16712017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trion electroluminescence from semiconducting carbon nanotubes.
    Jakubka F; Grimm SB; Zakharko Y; Gannott F; Zaumseil J
    ACS Nano; 2014 Aug; 8(8):8477-86. PubMed ID: 25029479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-Temperature Electroluminescence Excitation Mapping of Excitons and Trions in Short-Channel Monochiral Carbon Nanotube Devices.
    Gaulke M; Janissek A; Peyyety NA; Alamgir I; Riaz A; Dehm S; Li H; Lemmer U; Flavel BS; Kappes MM; Hennrich F; Wei L; Chen Y; Pyatkov F; Krupke R
    ACS Nano; 2020 Mar; 14(3):2709-2717. PubMed ID: 31920075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon nanotube photo- and electroluminescence in longitudinal electric fields.
    Freitag M; Steiner M; Naumov A; Small JP; Bol AA; Perebeinos V; Avouris P
    ACS Nano; 2009 Nov; 3(11):3744-8. PubMed ID: 19928934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electroluminescence from electrolyte-gated carbon nanotube field-effect transistors.
    Zaumseil J; Ho X; Guest JR; Wiederrecht GP; Rogers JA
    ACS Nano; 2009 Aug; 3(8):2225-34. PubMed ID: 19634895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short-wavelength electroluminescence from single-walled carbon nanotubes with high bias voltage.
    Hibino N; Suzuki S; Wakahara H; Kobayashi Y; Sato T; Maki H
    ACS Nano; 2011 Feb; 5(2):1215-22. PubMed ID: 21204568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elastic exciton-exciton scattering in photoexcited carbon nanotubes.
    Nguyen DT; Voisin C; Roussignol P; Roquelet C; Lauret JS; Cassabois G
    Phys Rev Lett; 2011 Sep; 107(12):127401. PubMed ID: 22026798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intense terahertz pulse induced exciton generation in carbon nanotubes.
    Watanabe S; Minami N; Shimano R
    Opt Express; 2011 Jan; 19(2):1528-38. PubMed ID: 21263694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electroluminescence from single-wall carbon nanotube network transistors.
    Adam E; Aguirre CM; Marty L; St-Antoine BC; Meunier F; Desjardins P; Ménard D; Martel R
    Nano Lett; 2008 Aug; 8(8):2351-5. PubMed ID: 18598091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exciton-exciton annihilation and relaxation pathways in semiconducting carbon nanotubes.
    Chmeliov J; Narkeliunas J; Graham MW; Fleming GR; Valkunas L
    Nanoscale; 2016 Jan; 8(3):1618-26. PubMed ID: 26689166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluence-dependent singlet exciton dynamics in length-sorted chirality-enriched single-walled carbon nanotubes.
    Park J; Deria P; Olivier JH; Therien MJ
    Nano Lett; 2014 Feb; 14(2):504-11. PubMed ID: 24329134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Evidence of Exciton-Exciton Annihilation in Single-Crystalline Organic Metal Halide Nanotube Assemblies.
    Ma YZ; Lin H; Du MH; Doughty B; Ma B
    J Phys Chem Lett; 2018 May; 9(9):2164-2169. PubMed ID: 29637785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electroluminescence in aligned arrays of single-wall carbon nanotubes with asymmetric contacts.
    Xie X; Islam AE; Wahab MA; Ye L; Ho X; Alam MA; Rogers JA
    ACS Nano; 2012 Sep; 6(9):7981-8. PubMed ID: 22866943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superlocalization of Excitons in Carbon Nanotubes at Cryogenic Temperature.
    Raynaud C; Claude T; Borel A; Amara MR; Graf A; Zaumseil J; Lauret JS; Chassagneux Y; Voisin C
    Nano Lett; 2019 Oct; 19(10):7210-7216. PubMed ID: 31487461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exciton binding energy in semiconducting single-walled carbon nanotubes.
    Ma YZ; Valkunas L; Bachilo SM; Fleming GR
    J Phys Chem B; 2005 Aug; 109(33):15671-4. PubMed ID: 16852986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping charge transport by electroluminescence in chirality-selected carbon nanotube networks.
    Jakubka F; Backes C; Gannott F; Mundloch U; Hauke F; Hirsch A; Zaumseil J
    ACS Nano; 2013 Aug; 7(8):7428-35. PubMed ID: 23915032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear photoluminescence excitation spectroscopy of carbon nanotubes: exploring the upper density limit of one-dimensional excitons.
    Murakami Y; Kono J
    Phys Rev Lett; 2009 Jan; 102(3):037401. PubMed ID: 19257392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitons in semiconducting carbon nanotubes: diameter-dependent photoluminescence spectra.
    Kanemitsu Y
    Phys Chem Chem Phys; 2011 Sep; 13(33):14879-88. PubMed ID: 21735026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.