These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 16712021)

  • 1. Surface-acoustic-wave-induced transport in a double quantum dot.
    Naber WJ; Fujisawa T; Liu HW; van der Wiel WG
    Phys Rev Lett; 2006 Apr; 96(13):136807. PubMed ID: 16712021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced electron-phonon coupling for a semiconductor charge qubit in a surface phonon cavity.
    Chen JC; Sato Y; Kosaka R; Hashisaka M; Muraki K; Fujisawa T
    Sci Rep; 2015 Oct; 5():15176. PubMed ID: 26469629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy transport and coherence properties of acoustic phonons generated by optical excitation of a quantum dot.
    Wigger D; Lüker S; Reiter DE; Axt VM; Machnikowski P; Kuhn T
    J Phys Condens Matter; 2014 Sep; 26(35):355802. PubMed ID: 25115958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phonon-assisted spin-polarized tunneling through an interacting quantum dot.
    Rudziński W
    J Phys Condens Matter; 2008 Jul; 20(27):275214. PubMed ID: 21694375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raman phonon emission in a driven double quantum dot.
    Colless JI; Croot XG; Stace TM; Doherty AC; Barrett SD; Lu H; Gossard AC; Reilly DJ
    Nat Commun; 2014 Apr; 5():3716. PubMed ID: 24759675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-electron population and depopulation of an isolated quantum dot using a surface-acoustic-wave pulse.
    Kataoka M; Schneble RJ; Thorn AL; Barnes CH; Ford CJ; Anderson D; Jones GA; Farrer I; Ritchie DA; Pepper M
    Phys Rev Lett; 2007 Jan; 98(4):046801. PubMed ID: 17358796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Excitation energy and frequency of transition spectral line of electron in an asymmetry quantum dot].
    Xiao JL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Mar; 29(3):598-601. PubMed ID: 19455781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coherent acoustic phonon oscillations in semiconductor multiple quantum wells with piezoelectric fields.
    Sun CK; Liang JC; Yu XY
    Phys Rev Lett; 2000 Jan; 84(1):179-82. PubMed ID: 11015864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proposed quenching of phonon-induced processes in photoexcited quantum dots due to electron-hole asymmetries.
    Nysteen A; Kaer P; Mork J
    Phys Rev Lett; 2013 Feb; 110(8):087401. PubMed ID: 23473200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-electron-phonon interaction in a suspended quantum dot phonon cavity.
    Weig EM; Blick RH; Brandes T; Kirschbaum J; Wegscheider W; Bichler M; Kotthaus JP
    Phys Rev Lett; 2004 Jan; 92(4):046804. PubMed ID: 14995394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optically driven quantum dots as source of coherent cavity phonons: a proposal for a phonon laser scheme.
    Kabuss J; Carmele A; Brandes T; Knorr A
    Phys Rev Lett; 2012 Aug; 109(5):054301. PubMed ID: 23006175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phonon-mediated versus coulombic backaction in quantum dot circuits.
    Harbusch D; Taubert D; Tranitz HP; Wegscheider W; Ludwig S
    Phys Rev Lett; 2010 May; 104(19):196801. PubMed ID: 20866986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical control of interdot electron tunneling in a double InGaAs quantum-dot nanostructure.
    Müller K; Bechtold A; Ruppert C; Zecherle M; Reithmaier G; Bichler M; Krenner HJ; Abstreiter G; Holleitner AW; Villas-Boas JM; Betz M; Finley JJ
    Phys Rev Lett; 2012 May; 108(19):197402. PubMed ID: 23003087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoluminescence of tetrahedral quantum-dot quantum wells.
    Fonoberov VA; Pokatilov EP; Fomin VM; Devreese JT
    Phys Rev Lett; 2004 Mar; 92(12):127402. PubMed ID: 15089704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitation-induced dephasing in a resonantly driven InAs/GaAs quantum dot.
    Monniello L; Tonin C; Hostein R; Lemaitre A; Martinez A; Voliotis V; Grousson R
    Phys Rev Lett; 2013 Jul; 111(2):026403. PubMed ID: 23889424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct evidence of interlevel exciton transitions mediated by single phonons in a semiconductor quantum dot using resonance fluorescence spectroscopy.
    Flagg EB; Robertson JW; Founta S; Ma W; Xiao M; Salamo GJ; Shih CK
    Phys Rev Lett; 2009 Mar; 102(9):097402. PubMed ID: 19392564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exciton multiplication from first principles.
    Jaeger HM; Hyeon-Deuk K; Prezhdo OV
    Acc Chem Res; 2013 Jun; 46(6):1280-9. PubMed ID: 23459543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photon emission from a cavity-coupled double quantum dot.
    Liu YY; Petersson KD; Stehlik J; Taylor JM; Petta JR
    Phys Rev Lett; 2014 Jul; 113(3):036801. PubMed ID: 25083659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dephasing in quantum dots: quadratic coupling to acoustic phonons.
    Muljarov EA; Zimmermann R
    Phys Rev Lett; 2004 Dec; 93(23):237401. PubMed ID: 15601200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing confined phonon modes by transport through a nanowire double quantum dot.
    Weber C; Fuhrer A; Fasth C; Lindwall G; Samuelson L; Wacker A
    Phys Rev Lett; 2010 Jan; 104(3):036801. PubMed ID: 20366667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.