These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 16712124)

  • 41. Single-file diffusion near channel boundaries.
    Vasenkov S; Schüring A; Fritzsche S
    Langmuir; 2006 Jun; 22(13):5728-33. PubMed ID: 16768501
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modeling the selective partitioning of cations into negatively charged nanopores in water.
    Yang L; Garde S
    J Chem Phys; 2007 Feb; 126(8):084706. PubMed ID: 17343468
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dynamics of ethanol and water mixtures observed in a self-adjusting molecularly thin slit pore.
    Severin N; Sokolov IM; Rabe JP
    Langmuir; 2014 Apr; 30(12):3455-9. PubMed ID: 24621444
    [TBL] [Abstract][Full Text] [Related]  

  • 44. On the thermodynamics of carbon nanotube single-file water loading: free energy, energy and entropy calculations.
    Garate JA; Perez-Acle T; Oostenbrink C
    Phys Chem Chem Phys; 2014 Mar; 16(11):5119-28. PubMed ID: 24477412
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Solvation, water permeation, and ionic selectivity of a putative model for the pore region of the voltage-gated sodium channel.
    Singh C; Sankararamakrishnan R; Subramaniam S; Jakobsson E
    Biophys J; 1996 Nov; 71(5):2276-88. PubMed ID: 8913570
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Water confinement in nanoporous silica materials.
    Renou R; Szymczyk A; Ghoufi A
    J Chem Phys; 2014 Jan; 140(4):044704. PubMed ID: 25669564
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Scaling behaviour for the water transport in nanoconfined geometries.
    Chiavazzo E; Fasano M; Asinari P; Decuzzi P
    Nat Commun; 2014 Apr; 5():4565. PubMed ID: 24699509
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Kinetic analysis of water transport through a single-file pore.
    Hernández JA; Fischbarg J
    J Gen Physiol; 1992 Apr; 99(4):645-62. PubMed ID: 1597681
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The "independence principle" in the processes of water transport.
    Hernández JA; Fischbarg J
    Biophys J; 1994 Oct; 67(4):1464-72. PubMed ID: 7529582
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Temperature dependence of the transport of single-file water molecules through a hydrophobic channel.
    Su J; Yang K
    J Comput Chem; 2016 May; 37(12):1043-7. PubMed ID: 26777386
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Osmotic and diffusive flows in single-file pores: new approach to modeling pore occupancy states.
    Kepner G
    Theor Biol Med Model; 2018 Oct; 15(1):15. PubMed ID: 30269687
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The mobility of single-file water molecules is governed by the number of H-bonds they may form with channel-lining residues.
    Horner A; Zocher F; Preiner J; Ollinger N; Siligan C; Akimov SA; Pohl P
    Sci Adv; 2015 Mar; 1(2):e1400083. PubMed ID: 26167541
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tracer counterpermeation analysis of diffusivity in finite-length nanopores with and without single-file dynamics.
    Ackerman DM; Evans JW
    Phys Rev E; 2017 Jan; 95(1-1):012132. PubMed ID: 28208315
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The relation between osmotic flow and tracer solvent diffusion for single-file transport.
    Manning GS
    Biophys Chem; 1975 Apr; 3(2):147-52. PubMed ID: 1148370
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The energetic barrier to single-file water flow through narrow channels.
    Pfeffermann J; Goessweiner-Mohr N; Pohl P
    Biophys Rev; 2021 Dec; 13(6):913-923. PubMed ID: 35035593
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Correct protonation states and relevant waters = better computational simulations?
    Spyrakis F; Dellafiora L; Da C; Kellogg GE; Cozzini P
    Curr Pharm Des; 2013; 19(23):4291-309. PubMed ID: 23170888
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Wall mediated transport in confined spaces: exact theory for low density.
    Jepps OG; Bhatia SK; Searles DJ
    Phys Rev Lett; 2003 Sep; 91(12):126102. PubMed ID: 14525376
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Catalytic conversion in nanoporous materials: Concentration oscillations and spatial correlations due to inhibited transport and intermolecular interactions.
    García A; Evans JW
    J Chem Phys; 2016 Nov; 145(17):174705. PubMed ID: 27825244
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural and dynamic properties of water molecules in a uniformly charged nanopore.
    Zhu J; Zhu E; Gao J; Li X; Su J
    J Chem Phys; 2018 Aug; 149(7):074703. PubMed ID: 30134682
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Generalized hydrodynamic analysis of transport through a finite open nanopore for two-component single-file systems.
    Lai KC; Pleasant TJ; García A; Evans JW
    Phys Rev E; 2020 Jun; 101(6-1):062103. PubMed ID: 32688593
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.