These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 16712129)
1. Transport in weighted networks: partition into superhighways and roads. Wu Z; Braunstein LA; Havlin S; Stanley HE Phys Rev Lett; 2006 Apr; 96(14):148702. PubMed ID: 16712129 [TBL] [Abstract][Full Text] [Related]
2. Betweenness centrality in a weighted network. Wang H; Hernandez JM; Van Mieghem P Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046105. PubMed ID: 18517688 [TBL] [Abstract][Full Text] [Related]
3. Range-limited centrality measures in complex networks. Ercsey-Ravasz M; Lichtenwalter RN; Chawla NV; Toroczkai Z Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066103. PubMed ID: 23005158 [TBL] [Abstract][Full Text] [Related]
4. Classification of transport backbones of complex networks. Choi W; Chae H; Yook SH; Kim Y Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):060802. PubMed ID: 24483375 [TBL] [Abstract][Full Text] [Related]
5. Hierarchical clustering in minimum spanning trees. Yu M; Hillebrand A; Tewarie P; Meier J; van Dijk B; Van Mieghem P; Stam CJ Chaos; 2015 Feb; 25(2):023107. PubMed ID: 25725643 [TBL] [Abstract][Full Text] [Related]
6. Percolation theory applied to measures of fragmentation in social networks. Chen Y; Paul G; Cohen R; Havlin S; Borgatti SP; Liljeros F; Stanley HE Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046107. PubMed ID: 17500961 [TBL] [Abstract][Full Text] [Related]
7. Robustness of a network formed by n interdependent networks with a one-to-one correspondence of dependent nodes. Gao J; Buldyrev SV; Havlin S; Stanley HE Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066134. PubMed ID: 23005189 [TBL] [Abstract][Full Text] [Related]
8. Analysis of relative influence of nodes in directed networks. Masuda N; Kawamura Y; Kori H Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046114. PubMed ID: 19905397 [TBL] [Abstract][Full Text] [Related]
9. Network evolution based on centrality. König MD; Tessone CJ Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056108. PubMed ID: 22181474 [TBL] [Abstract][Full Text] [Related]
10. Most probable paths in temporal weighted networks: An application to ocean transport. Ser-Giacomi E; Vasile R; Hernández-García E; López C Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012818. PubMed ID: 26274236 [TBL] [Abstract][Full Text] [Related]
11. Structure of shells in complex networks. Shao J; Buldyrev SV; Braunstein LA; Havlin S; Stanley HE Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036105. PubMed ID: 19905178 [TBL] [Abstract][Full Text] [Related]
12. Robustness of network of networks under targeted attack. Dong G; Gao J; Du R; Tian L; Stanley HE; Havlin S Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052804. PubMed ID: 23767581 [TBL] [Abstract][Full Text] [Related]
13. Minimum spanning tree reflects the alterations of the default mode network during Alzheimer's disease. Ciftçi K Ann Biomed Eng; 2011 May; 39(5):1493-504. PubMed ID: 21286814 [TBL] [Abstract][Full Text] [Related]
14. Scale-free networks emerging from weighted random graphs. Kalisky T; Sreenivasan S; Braunstein LA; Buldyrev SV; Havlin S; Stanley HE Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):025103. PubMed ID: 16605380 [TBL] [Abstract][Full Text] [Related]
15. Hybrid Percolation Transition in Cluster Merging Processes: Continuously Varying Exponents. Cho YS; Lee JS; Herrmann HJ; Kahng B Phys Rev Lett; 2016 Jan; 116(2):025701. PubMed ID: 26824550 [TBL] [Abstract][Full Text] [Related]
16. Consistency and differences between centrality measures across distinct classes of networks. Oldham S; Fulcher B; Parkes L; Arnatkevic Iūtė A; Suo C; Fornito A PLoS One; 2019; 14(7):e0220061. PubMed ID: 31348798 [TBL] [Abstract][Full Text] [Related]
17. Optimal paths in complex networks with correlated weights: the worldwide airport network. Wu Z; Braunstein LA; Colizza V; Cohen R; Havlin S; Stanley HE Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 2):056104. PubMed ID: 17279965 [TBL] [Abstract][Full Text] [Related]
18. Theory of minimum spanning trees. I. Mean-field theory and strongly disordered spin-glass model. Jackson TS; Read N Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):021130. PubMed ID: 20365553 [TBL] [Abstract][Full Text] [Related]
19. Visual reasoning about social networks using centrality sensitivity. Correa CD; Crnovrsanin T; Ma KL IEEE Trans Vis Comput Graph; 2012 Jan; 18(1):106-20. PubMed ID: 22076488 [TBL] [Abstract][Full Text] [Related]
20. Percolation of a general network of networks. Gao J; Buldyrev SV; Stanley HE; Xu X; Havlin S Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062816. PubMed ID: 24483520 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]