These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 16712258)

  • 1. Surface segregation and backscattering in doped silicon nanowires.
    Fernández-Serra MV; Adessi Ch; Blase X
    Phys Rev Lett; 2006 Apr; 96(16):166805. PubMed ID: 16712258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conductance, surface traps, and passivation in doped silicon nanowires.
    Fernandez-Serra MV; Adessi Ch; Blase X
    Nano Lett; 2006 Dec; 6(12):2674-8. PubMed ID: 17163686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation and segregation energies of B and P doped and BP codoped silicon nanowires.
    Peelaers H; Partoens B; Peeters FM
    Nano Lett; 2006 Dec; 6(12):2781-4. PubMed ID: 17163705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of dopant-pair defects and doping efficiency in B- and P-doped silicon nanowires.
    Moon CY; Lee WJ; Chang KJ
    Nano Lett; 2008 Oct; 8(10):3086-91. PubMed ID: 18729413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scaling theory put into practice: first-principles modeling of transport in doped silicon nanowires.
    Markussen T; Rurali R; Jauho AP; Brandbyge M
    Phys Rev Lett; 2007 Aug; 99(7):076803. PubMed ID: 17930915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Confinement and surface effects in B and P doping of silicon nanowires.
    Leao CR; Fazzio A; da Silva AJ
    Nano Lett; 2008 Jul; 8(7):1866-71. PubMed ID: 18529083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic level scheme in boron- and phosphorus-doped silicon nanowires.
    Sato K; Castaldini A; Fukata N; Cavallini A
    Nano Lett; 2012 Jun; 12(6):3012-7. PubMed ID: 22545949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical transport properties of single undoped and n-type doped InN nanowires.
    Richter T; Lüth H; Schäpers T; Meijers R; Jeganathan K; Estévez Hernández S; Calarco R; Marso M
    Nanotechnology; 2009 Oct; 20(40):405206. PubMed ID: 19738304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preferential positioning of dopants and co-dopants in embedded and freestanding Si nanocrystals.
    Guerra R; Ossicini S
    J Am Chem Soc; 2014 Mar; 136(11):4404-9. PubMed ID: 24564481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Segregation tendencies of transition-metal dopants in wide band gap semiconductor nanowires.
    Aras M; Güler-Kılıç S; Kılıç Ç
    Phys Chem Chem Phys; 2020 Dec; 22(48):27987-27998. PubMed ID: 33295351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomistic design of thermoelectric properties of silicon nanowires.
    Vo TT; Williamson AJ; Lordi V; Galli G
    Nano Lett; 2008 Apr; 8(4):1111-4. PubMed ID: 18302325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spin transport in dangling-bond wires on doped H-passivated Si(100).
    Kepenekian M; Robles R; Rurali R; Lorente N
    Nanotechnology; 2014 Nov; 25(46):465703. PubMed ID: 25355047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preserved conductance in covalently functionalized silicon nanowires.
    Blase X; Fernández-Serra MV
    Phys Rev Lett; 2008 Feb; 100(4):046802. PubMed ID: 18352315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study on the localized surface plasmon resonance of boron- and phosphorus-doped silicon nanocrystals.
    Zhou S; Pi X; Ni Z; Ding Y; Jiang Y; Jin C; Delerue C; Yang D; Nozaki T
    ACS Nano; 2015 Jan; 9(1):378-86. PubMed ID: 25551330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular chemisorption on passivated and defective boron doped silicon surfaces: a "forced" dative bond.
    Boukari K; Duverger E; Sonnet P
    Phys Chem Chem Phys; 2014 Dec; 16(45):24866-73. PubMed ID: 25318974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ab Initio electronic properties of monolayer phosphorus nanowires in silicon.
    Drumm DW; Smith JS; Per MC; Budi A; Hollenberg LC; Russo SP
    Phys Rev Lett; 2013 Mar; 110(12):126802. PubMed ID: 25166832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic transport in natively oxidized silicon nanowires.
    Koleini M; Colombi Ciacchi L; Fernández-Serra MV
    ACS Nano; 2011 Apr; 5(4):2839-46. PubMed ID: 21375292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Doped ZnO nanowires obtained by thermal annealing.
    Shan CX; Liu Z; Wong CC; Hark SK
    J Nanosci Nanotechnol; 2007 Feb; 7(2):700-3. PubMed ID: 17450817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface dangling-bond States and band lineups in hydrogen-terminated Si, Ge, and Ge/si nanowires.
    Kagimura R; Nunes RW; Chacham H
    Phys Rev Lett; 2007 Jan; 98(2):026801. PubMed ID: 17358629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemically doped radial junction characteristics in silicon nanowires.
    Ng MF; Tong SW
    Nano Lett; 2012 Dec; 12(12):6133-8. PubMed ID: 23137035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.