These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 16712258)
21. Growth of doped silicon nanowires by pulsed laser deposition and their analysis by electron beam induced current imaging. Eisenhawer B; Zhang D; Clavel R; Berger A; Michler J; Christiansen S Nanotechnology; 2011 Feb; 22(7):075706. PubMed ID: 21233539 [TBL] [Abstract][Full Text] [Related]
22. Surface effects on the atomic and electronic structure of unpassivated GaAs nanowires. Rosini M; Magri R ACS Nano; 2010 Oct; 4(10):6021-31. PubMed ID: 20853868 [TBL] [Abstract][Full Text] [Related]
23. Ab initio studies of the optoelectronic structure of undoped and doped silicon nanocrystals and nanowires: the role of size, passivation, symmetry and phase. Ossicini S; Marri I; Amato M; Palummo M; Canadell E; Rurali R Faraday Discuss; 2020 Jun; 222(0):217-239. PubMed ID: 32108213 [TBL] [Abstract][Full Text] [Related]
24. Gate-controlled donor activation in silicon nanowires. Yan B; Frauenheim T; Gali A Nano Lett; 2010 Sep; 10(9):3791-5. PubMed ID: 20718483 [TBL] [Abstract][Full Text] [Related]
25. Solid-state diffusion as an efficient doping method for silicon nanowires and nanowire field effect transistors. Moselund KE; Ghoneim H; Schmid H; Björk MT; Lörtscher E; Karg S; Signorello G; Webb D; Tschudy M; Beyeler R; Riel H Nanotechnology; 2010 Oct; 21(43):435202. PubMed ID: 20890021 [TBL] [Abstract][Full Text] [Related]
26. Varying Surface Chemistries for p-Doped and n-Doped Silicon Nanocrystals and Impact on Photovoltaic Devices. Velusamy T; Mitra S; Macias-Montero M; Svrcek V; Mariotti D ACS Appl Mater Interfaces; 2015 Dec; 7(51):28207-14. PubMed ID: 26624237 [TBL] [Abstract][Full Text] [Related]
27. Electron transport through dangling-bond silicon wires on H-passivated Si(100). Kepenekian M; Novaes FD; Robles R; Monturet S; Kawai H; Joachim C; Lorente N J Phys Condens Matter; 2013 Jan; 25(2):025503. PubMed ID: 23197188 [TBL] [Abstract][Full Text] [Related]
28. Engineering the electronic structure of surface dangling bond nanowires of different size and dimensionality. Naydenov B; Boland JJ Nanotechnology; 2013 Jul; 24(27):275202. PubMed ID: 23765570 [TBL] [Abstract][Full Text] [Related]
29. Contact doping of silicon wafers and nanostructures with phosphine oxide monolayers. Hazut O; Agarwala A; Amit I; Subramani T; Zaidiner S; Rosenwaks Y; Yerushalmi R ACS Nano; 2012 Nov; 6(11):10311-8. PubMed ID: 23083376 [TBL] [Abstract][Full Text] [Related]
30. Electronic Structure of Silicon Nanowires Matrix from Ab Initio Calculations. Monastyrskii LS; Boyko YV; Sokolovskii BS; Potashnyk VY Nanoscale Res Lett; 2016 Dec; 11(1):25. PubMed ID: 26768147 [TBL] [Abstract][Full Text] [Related]
31. An ab initio study of energetic stability and electronic confinement for different structural phases of ZnO nanowires. Schmidt TM; Miwa RH Nanotechnology; 2009 May; 20(21):215202. PubMed ID: 19423926 [TBL] [Abstract][Full Text] [Related]
32. Preferential Positioning, Stability, and Segregation of Dopants in Hexagonal Si Nanowires. Amato M; Ossicini S; Canadell E; Rurali R Nano Lett; 2019 Feb; 19(2):866-876. PubMed ID: 30608707 [TBL] [Abstract][Full Text] [Related]
33. Doping and Raman characterization of boron and phosphorus atoms in germanium nanowires. Fukata N; Sato K; Mitome M; Bando Y; Sekiguchi T; Kirkham M; Hong JI; Wang ZL; Snyder RL ACS Nano; 2010 Jul; 4(7):3807-16. PubMed ID: 20565120 [TBL] [Abstract][Full Text] [Related]
34. Temperature and quantum effects in the stability of pure and doped gold nanowires. Hobi E; Fazzio A; da Silva AJ Phys Rev Lett; 2008 Feb; 100(5):056104. PubMed ID: 18352396 [TBL] [Abstract][Full Text] [Related]
35. The effects of oxygen on the surface passivation of InP nanowires. Dionízio Moreira M; Venezuela P; Schmidt TM Nanotechnology; 2008 Feb; 19(6):065203. PubMed ID: 21730696 [TBL] [Abstract][Full Text] [Related]
36. Defects, quasibound states, and quantum conductance in metallic carbon nanotubes. Choi HJ; Ihm J; Louie SG; Cohen ML Phys Rev Lett; 2000 Mar; 84(13):2917-20. PubMed ID: 11018975 [TBL] [Abstract][Full Text] [Related]
37. Ex situ vapor phase boron doping of silicon nanowires using BBr3. Doerk GS; Lestari G; Liu F; Carraro C; Maboudian R Nanoscale; 2010 Jul; 2(7):1165-70. PubMed ID: 20648344 [TBL] [Abstract][Full Text] [Related]
38. Electronic transport in phosphorus-doped silicon nanocrystal networks. Stegner AR; Pereira RN; Klein K; Lechner R; Dietmueller R; Brandt MS; Stutzmann M; Wiggers H Phys Rev Lett; 2008 Jan; 100(2):026803. PubMed ID: 18232904 [TBL] [Abstract][Full Text] [Related]