These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 16712375)

  • 1. Giant amplification of interfacially driven transport by hydrodynamic slip: diffusio-osmosis and beyond.
    Ajdari A; Bocquet L
    Phys Rev Lett; 2006 May; 96(18):186102. PubMed ID: 16712375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Massive amplification of surface-induced transport at superhydrophobic surfaces.
    Huang DM; Cottin-Bizonne C; Ybert C; Bocquet L
    Phys Rev Lett; 2008 Aug; 101(6):064503. PubMed ID: 18764460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfacial transport with mobile surface charges and consequences for ionic transport in carbon nanotubes.
    Mouterde T; Bocquet L
    Eur Phys J E Soft Matter; 2018 Dec; 41(12):148. PubMed ID: 30564898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osmotic flow through fully permeable nanochannels.
    Lee C; Cottin-Bizonne C; Biance AL; Joseph P; Bocquet L; Ybert C
    Phys Rev Lett; 2014 Jun; 112(24):244501. PubMed ID: 24996091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interfacially driven transport theory: a way to unify Marangoni and osmotic flows.
    Bacchin P; Glavatskiy K; Gerbaud V
    Phys Chem Chem Phys; 2019 May; 21(19):10114-10124. PubMed ID: 31062788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Passive solute separation in AC electroosmosis including surface charge-coupled hydrodynamic slip effects.
    Huang HF; Kuo JE; Huang KH
    Electrophoresis; 2022 Feb; 43(4):571-580. PubMed ID: 34897730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacially driven transport in narrow channels.
    Bacchin P
    J Phys Condens Matter; 2018 Jul; 30(29):294001. PubMed ID: 29877192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusio-osmosis and wetting on solid surfaces: a unified description based on a virtual work principle.
    Clarke N; Gibbions N; Long DR
    Soft Matter; 2020 Apr; 16(14):3485-3497. PubMed ID: 32211702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroosmotic transport of immiscible binary system with a layer of non-conducting fluid under interfacial slip: The role applied pressure gradient.
    Gaikwad H; Basu DN; Mondal PK
    Electrophoresis; 2016 Jul; 37(14):1998-2009. PubMed ID: 27079927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scaling Hydrodynamic Boundary Conditions of Microstructured Surfaces in the Thin Channel Limit.
    Pilkington GA; Gupta R; Fréchette J
    Langmuir; 2016 Mar; 32(10):2360-8. PubMed ID: 26901492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mesoscale simulation of phoretically osmotic boundary conditions.
    Yang M; Liu R; Ye F; Chen K
    Soft Matter; 2017 Jan; 13(3):647-657. PubMed ID: 27991635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electro-osmosis on anisotropic superhydrophobic surfaces.
    Belyaev AV; Vinogradova OI
    Phys Rev Lett; 2011 Aug; 107(9):098301. PubMed ID: 21929273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osmotic and diffusio-osmotic flow generation at high solute concentration. I. Mechanical approaches.
    Marbach S; Yoshida H; Bocquet L
    J Chem Phys; 2017 May; 146(19):194701. PubMed ID: 28527459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermophoresis at a charged surface: the role of hydrodynamic slip.
    Morthomas J; Würger A
    J Phys Condens Matter; 2009 Jan; 21(3):035103. PubMed ID: 21817262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osmotic and diffusio-osmotic flow generation at high solute concentration. II. Molecular dynamics simulations.
    Yoshida H; Marbach S; Bocquet L
    J Chem Phys; 2017 May; 146(19):194702. PubMed ID: 28527431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-Negligible Diffusio-Osmosis Inside an Ion Concentration Polarization Layer.
    Cho I; Kim W; Kim J; Kim HY; Lee H; Kim SJ
    Phys Rev Lett; 2016 Jun; 116(25):254501. PubMed ID: 27391727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slip flow in graphene nanochannels.
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2011 Oct; 135(14):144701. PubMed ID: 22010725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slip-enhanced electrokinetic energy conversion in nanofluidic channels.
    Ren Y; Stein D
    Nanotechnology; 2008 May; 19(19):195707. PubMed ID: 21825725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffusiophoresis and Diffusio-osmosis into a Dead-End Channel: Role of the Concentration-Dependence of Zeta Potential.
    Akdeniz B; Wood JA; Lammertink RGH
    Langmuir; 2023 Feb; 39(6):2322-2332. PubMed ID: 36708332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reliable measurements of interfacial slip by colloid probe atomic force microscopy. II. Hydrodynamic force measurements.
    Zhu L; Attard P; Neto C
    Langmuir; 2011 Jun; 27(11):6712-9. PubMed ID: 21542568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.