These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 16712772)
41. Substrate-free structure of a monomeric NADP isocitrate dehydrogenase: an open conformation phylogenetic relationship of isocitrate dehydrogenase. Imabayashi F; Aich S; Prasad L; Delbaere LT Proteins; 2006 Apr; 63(1):100-12. PubMed ID: 16416443 [TBL] [Abstract][Full Text] [Related]
42. Complete reversal of coenzyme specificity of isocitrate dehydrogenase from Haloferax volcanii. RodrÃguez-Arnedo A; Camacho M; Llorca F; Bonete MJ Protein J; 2005 Jul; 24(5):259-66. PubMed ID: 16284723 [TBL] [Abstract][Full Text] [Related]
43. Critical role of Lys212 and Tyr140 in porcine NADP-dependent isocitrate dehydrogenase. Kim TK; Lee P; Colman RF J Biol Chem; 2003 Dec; 278(49):49323-31. PubMed ID: 14512428 [TBL] [Abstract][Full Text] [Related]
44. Determination of phosphorylation sites for NADP-specific isocitrate dehydrogenase from mycobacterium tuberculosis. Vinekar R; Ghosh I J Biomol Struct Dyn; 2009 Jun; 26(6):741-54. PubMed ID: 19385702 [TBL] [Abstract][Full Text] [Related]
45. Characterization of a mutant Bacillus subtilis adenylosuccinate lyase equivalent to a mutant enzyme found in human adenylosuccinate lyase deficiency: asparagine 276 plays an important structural role. Palenchar JB; Colman RF Biochemistry; 2003 Feb; 42(7):1831-41. PubMed ID: 12590570 [TBL] [Abstract][Full Text] [Related]
46. Differential effects of polyamine on the cytosolic and mitochondrial NADP-isocitrate dehydrogenases. Murakami K; Haneda M; Iwata S; Yoshino M Biofactors; 2012; 38(5):365-71. PubMed ID: 22674798 [TBL] [Abstract][Full Text] [Related]
47. Enzymatic characterization of a monomeric isocitrate dehydrogenase from Streptomyces lividans TK54. Zhang B; Wang B; Wang P; Cao Z; Huang E; Hao J; Dean AM; Zhu G Biochimie; 2009; 91(11-12):1405-10. PubMed ID: 19631711 [TBL] [Abstract][Full Text] [Related]
48. A highly active decarboxylating dehydrogenase with rationally inverted coenzyme specificity. Chen R; Greer A; Dean AM Proc Natl Acad Sci U S A; 1995 Dec; 92(25):11666-70. PubMed ID: 8524825 [TBL] [Abstract][Full Text] [Related]
49. Role of methionine-13 in the catalytic mechanism of 6-phosphogluconate dehydrogenase from sheep liver. Cervellati C; Dallocchio F; Bergamini CM; Cook PF Biochemistry; 2005 Feb; 44(7):2432-40. PubMed ID: 15709755 [TBL] [Abstract][Full Text] [Related]
50. Mutational analysis of the catalytic residues lysine 230 and tyrosine 160 in the NADP(+)-dependent isocitrate dehydrogenase from Escherichia coli. Lee ME; Dyer DH; Klein OD; Bolduc JM; Stoddard BL; Koshland DE Biochemistry; 1995 Jan; 34(1):378-84. PubMed ID: 7819221 [TBL] [Abstract][Full Text] [Related]
51. Characterization of mutants of beta histidine91, beta aspartate213, and beta asparagine222, possible components of the energy transduction pathway of the proton-translocating pyridine nucleotide transhydrogenase of Escherichia coli. Bragg PD; Hou C Arch Biochem Biophys; 2001 Apr; 388(2):299-307. PubMed ID: 11368169 [TBL] [Abstract][Full Text] [Related]
52. Oxidative inactivation of reduced NADP-generating enzymes in E. coli: iron-dependent inactivation with affinity cleavage of NADP-isocitrate dehydrogenase. Murakami K; Tsubouchi R; Fukayama M; Ogawa T; Yoshino M Arch Microbiol; 2006 Nov; 186(5):385-92. PubMed ID: 16897033 [TBL] [Abstract][Full Text] [Related]
53. Structure-guided engineering of the coenzyme specificity of Pseudomonas fluorescens mannitol 2-dehydrogenase to enable efficient utilization of NAD(H) and NADP(H). Bubner P; Klimacek M; Nidetzky B FEBS Lett; 2008 Jan; 582(2):233-7. PubMed ID: 18082142 [TBL] [Abstract][Full Text] [Related]
54. Involvement of two basic residues (Lys-17 and Arg-39) of mouse lung carbonyl reductase in NADP(H)-binding and fatty acid activation: site-directed mutagenesis and kinetic analyses. Nakanishi M; Kakumoto M; Matsuura K; Deyashiki Y; Tanaka N; Nonaka T; Mitsui Y; Hara A J Biochem; 1996 Aug; 120(2):257-63. PubMed ID: 8889808 [TBL] [Abstract][Full Text] [Related]
56. Identification of Mn2+-binding aspartates from alpha, beta, and gamma subunits of human NAD-dependent isocitrate dehydrogenase. Soundar S; O'Hagan M; Fomulu KS; Colman RF J Biol Chem; 2006 Jul; 281(30):21073-21081. PubMed ID: 16737955 [TBL] [Abstract][Full Text] [Related]
57. Biochemical and molecular characterization of the isocitrate dehydrogenase with dual coenzyme specificity from the obligate methylotroph Methylobacillus Flagellatus. Romkina AY; Kiriukhin MY PLoS One; 2017; 12(4):e0176056. PubMed ID: 28423051 [TBL] [Abstract][Full Text] [Related]
58. Contribution of Ser463 residue to the enzymatic and autoprocessing activities of Escherichia coli gamma-glutamyltranspeptidase. Hsu WH; Ong PL; Chen SC; Lin LL Indian J Biochem Biophys; 2009 Aug; 46(4):281-8. PubMed ID: 19788059 [TBL] [Abstract][Full Text] [Related]
59. Probing the affinity and specificity of yeast alcohol dehydrogenase I for coenzymes. Fan F; Plapp BV Arch Biochem Biophys; 1999 Jul; 367(2):240-9. PubMed ID: 10395740 [TBL] [Abstract][Full Text] [Related]
60. Biochemical and molecular characterization of NAD(+)-dependent isocitrate dehydrogenase from the ethanologenic bacterium Zymomonas mobilis. Wang P; Jin M; Zhu G FEMS Microbiol Lett; 2012 Feb; 327(2):134-41. PubMed ID: 22117777 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]