BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 16712999)

  • 1. Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts.
    van Berkel WJ; Kamerbeek NM; Fraaije MW
    J Biotechnol; 2006 Aug; 124(4):670-89. PubMed ID: 16712999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flavoprotein monooxygenases: Versatile biocatalysts.
    Paul CE; Eggerichs D; Westphal AH; Tischler D; van Berkel WJH
    Biotechnol Adv; 2021 Nov; 51():107712. PubMed ID: 33588053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flavin dependent monooxygenases.
    Huijbers MM; Montersino S; Westphal AH; Tischler D; van Berkel WJ
    Arch Biochem Biophys; 2014 Feb; 544():2-17. PubMed ID: 24361254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics involved in catalysis by single-component and two-component flavin-dependent aromatic hydroxylases.
    Ballou DP; Entsch B; Cole LJ
    Biochem Biophys Res Commun; 2005 Dec; 338(1):590-8. PubMed ID: 16236251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and Mechanistic Studies on Substrate and Stereoselectivity of the Indole Monooxygenase VpIndA1: New Avenues for Biocatalytic Epoxidations and Sulfoxidations.
    Kratky J; Eggerichs D; Heine T; Hofmann S; Sowa P; Weiße RH; Tischler D; Sträter N
    Angew Chem Int Ed Engl; 2023 Apr; 62(17):e202300657. PubMed ID: 36762980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent developments in the application of Baeyer-Villiger monooxygenases as biocatalysts.
    de Gonzalo G; Mihovilovic MD; Fraaije MW
    Chembiochem; 2010 Nov; 11(16):2208-31. PubMed ID: 20936617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The devil is in the details: The chemical basis and mechanistic versatility of flavoprotein monooxygenases.
    Toplak M; Matthews A; Teufel R
    Arch Biochem Biophys; 2021 Feb; 698():108732. PubMed ID: 33358998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flavoprotein monooxygenases for oxidative biocatalysis: recombinant expression in microbial hosts and applications.
    Ceccoli RD; Bianchi DA; Rial DV
    Front Microbiol; 2014; 5():25. PubMed ID: 24567729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two structures of an N-hydroxylating flavoprotein monooxygenase: ornithine hydroxylase from Pseudomonas aeruginosa.
    Olucha J; Meneely KM; Chilton AS; Lamb AL
    J Biol Chem; 2011 Sep; 286(36):31789-98. PubMed ID: 21757711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Styrene monooxygenases, indole monooxygenases and related flavoproteins applied in bioremediation and biocatalysis.
    Tischler D; Kumpf A; Eggerichs D; Heine T
    Enzymes; 2020; 47():399-425. PubMed ID: 32951830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparative use of isolated CYP102 monooxygenases -- a critical appraisal.
    Eiben S; Kaysser L; Maurer S; Kühnel K; Urlacher VB; Schmid RD
    J Biotechnol; 2006 Aug; 124(4):662-9. PubMed ID: 16716428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biotransformations using prokaryotic P450 monooxygenases.
    Urlacher V; Schmid RD
    Curr Opin Biotechnol; 2002 Dec; 13(6):557-64. PubMed ID: 12482514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monooxygenases as biocatalysts: Classification, mechanistic aspects and biotechnological applications.
    Torres Pazmiño DE; Winkler M; Glieder A; Fraaije MW
    J Biotechnol; 2010 Mar; 146(1-2):9-24. PubMed ID: 20132846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Form follows function: structural and catalytic variation in the class a flavoprotein monooxygenases.
    Crozier-Reabe K; Moran GR
    Int J Mol Sci; 2012 Nov; 13(12):15601-39. PubMed ID: 23443084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial Flavoprotein Monooxygenases as Mimics of Mammalian Flavin-Containing Monooxygenases for the Enantioselective Preparation of Drug Metabolites.
    Gul T; Krzek M; Permentier HP; Fraaije MW; Bischoff R
    Drug Metab Dispos; 2016 Aug; 44(8):1270-6. PubMed ID: 26984198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A flavoprotein monooxygenase that catalyses a Baeyer-Villiger reaction and thioether oxidation using NADH as the nicotinamide cofactor.
    Jensen CN; Cartwright J; Ward J; Hart S; Turkenburg JP; Ali ST; Allen MJ; Grogan G
    Chembiochem; 2012 Apr; 13(6):872-8. PubMed ID: 22416037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defining Electron Bifurcation in the Electron-Transferring Flavoprotein Family.
    Garcia Costas AM; Poudel S; Miller AF; Schut GJ; Ledbetter RN; Fixen KR; Seefeldt LC; Adams MWW; Harwood CS; Boyd ES; Peters JW
    J Bacteriol; 2017 Nov; 199(21):. PubMed ID: 28808132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study of N-hydroxylating flavoprotein monooxygenases reveals differences in kinetics and cofactor binding.
    Ernst S; Mährlein A; Ritzmann NH; Drees SL; Fetzner S
    FEBS J; 2022 Sep; 289(18):5637-5655. PubMed ID: 35313078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monooxygenation of aromatic compounds by flavin-dependent monooxygenases.
    Chenprakhon P; Wongnate T; Chaiyen P
    Protein Sci; 2019 Jan; 28(1):8-29. PubMed ID: 30311986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The oxidation of thiols by flavoprotein oxidases: a biocatalytic route to reactive thiocarbonyls.
    Ewing TA; Dijkman WP; Vervoort JM; Fraaije MW; van Berkel WJ
    Angew Chem Int Ed Engl; 2014 Nov; 53(48):13206-9. PubMed ID: 25284255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.