These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 16713046)
1. A comparison of the viscoelastic properties of bone grafts. Datta A; Gheduzzi S; Miles AW Clin Biomech (Bristol); 2006 Aug; 21(7):761-6. PubMed ID: 16713046 [TBL] [Abstract][Full Text] [Related]
2. Morsellised sawbones is an acceptable experimental substitute for the in vitro elastic and viscoelastic mechanical characterisation of morsellised cancellous bone undergoing impaction grafting. Ayers MP; Clift SE; Gheduzzi S Med Eng Phys; 2014 Jan; 36(1):26-31. PubMed ID: 24075067 [TBL] [Abstract][Full Text] [Related]
3. Adjuvant therapies of bone graft around non-cemented experimental orthopedic implants stereological methods and experiments in dogs. Baas J Acta Orthop Suppl; 2008 Aug; 79(330):1-43. PubMed ID: 19065776 [TBL] [Abstract][Full Text] [Related]
4. Biomechanical analysis of a synthetic, biodegradable impaction graft substitute. Lutton C; Wheatley D; Wilson L; Van der Velden W; Crawford R; Goss B J Biomed Mater Res A; 2010 Nov; 95(2):381-7. PubMed ID: 20632400 [TBL] [Abstract][Full Text] [Related]
5. Viscoelastic modelling of impacted morsellised bone accurately describes unloading behaviour: an experimental study of stiffness moduli and recoil properties. Fosse L; Muller S; Rønningen H; Irgens F; Benum P J Biomech; 2006; 39(12):2295-302. PubMed ID: 16169553 [TBL] [Abstract][Full Text] [Related]
6. A laboratory simulation for morselized bone graft fusion: apparent modulus under operatively based femoral impaction kinetics. Heiner AD; Callaghan JJ; Brown TD J Biomech; 2005 Apr; 38(4):811-8. PubMed ID: 15713302 [TBL] [Abstract][Full Text] [Related]
7. Larger bone graft size and washing of bone grafts prior to impaction enhances the initial stability of cemented cups: experiments using a synthetic acetabular model. Arts JJ; Verdonschot N; Buma P; Schreurs BW Acta Orthop; 2006 Apr; 77(2):227-33. PubMed ID: 16752283 [TBL] [Abstract][Full Text] [Related]
8. Stiffness and compactness of morselized grafts during impaction: an in vitro study with human femoral heads. Bavadekar A; Cornu O; Godts B; Delloye C; Van Tomme J; Banse X Acta Orthop Scand; 2001 Oct; 72(5):470-6. PubMed ID: 11728073 [TBL] [Abstract][Full Text] [Related]
9. Morselized bone grafting in revision arthroplasty of the knee: a retrospective analysis of 34 reconstructions after 2-9 years. Steens W; Loehr JF; Wodtke J; Katzer A Acta Orthop; 2008 Oct; 79(5):683-8. PubMed ID: 18839376 [TBL] [Abstract][Full Text] [Related]
10. The effect of the addition of hydroxyapatite graft substitutes upon the hoop strain and subsequent subsidence of a femoral model during impaction bone grafting. McNamara IR; Rayment A; Brooks R; Best S; Rushton N J Mech Behav Biomed Mater; 2012 Jan; 5(1):238-46. PubMed ID: 22100099 [TBL] [Abstract][Full Text] [Related]
11. Revision total hip arthroplasty using impaction bone grafting technique. Nisar A; Choon DS; Varaprasad M; Abbas AA Med J Malaysia; 2006 Feb; 61 Suppl A():100-2. PubMed ID: 17042242 [TBL] [Abstract][Full Text] [Related]
12. Constitutive models for constrained compression of unimpacted and impacted human morselized bone grafts. Lunde KB; Foss OA; Fosse L; Skallerud B J Biomech Eng; 2008 Dec; 130(6):061014. PubMed ID: 19045543 [TBL] [Abstract][Full Text] [Related]
13. [Results of acetabular reconstruction with solid bone graft in primary and revision hip arthroplasty]. Zofka P Acta Chir Orthop Traumatol Cech; 2006 Jun; 73(3):190-6. PubMed ID: 16846565 [TBL] [Abstract][Full Text] [Related]
14. Subsidence in impaction grafting: the effect of adding a ceramic bone graft extender to bone. Blom AW; Grimm B; Miles AW; Cunningham JL; Learmonth ID Proc Inst Mech Eng H; 2002; 216(4):265-70. PubMed ID: 12206523 [TBL] [Abstract][Full Text] [Related]
15. Use of mesenchymal stem cells to enhance bone formation around revision hip replacements. Korda M; Blunn G; Goodship A; Hua J J Orthop Res; 2008 Jun; 26(6):880-5. PubMed ID: 18271017 [TBL] [Abstract][Full Text] [Related]
16. A hydroxyapatite graft substitute reduces subsidence in a femoral impaction grafting model. Munro NA; Downing MR; Meakin JR; Lee AJ; Ashcroft GP Clin Orthop Relat Res; 2007 Feb; 455():246-52. PubMed ID: 16967033 [TBL] [Abstract][Full Text] [Related]
17. Mechanical stability of structured bone grafts from the anterior iliac crest. Parsch D; Breitwieser T; Breusch SJ Clin Biomech (Bristol); 2008 Aug; 23(7):955-60. PubMed ID: 18423953 [TBL] [Abstract][Full Text] [Related]
18. [Preparation of xenogeneic bone graft and its osteoinductivity]. Chen X; Li B; Li J; Yin S; Song H; Yuan L Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Mar; 23(3):362-5. PubMed ID: 19366155 [TBL] [Abstract][Full Text] [Related]
19. The development of a model for in vitro testing of femoral stems in impaction bone grafting. Heal JS; Gozzard C; Gheduzzi S; Grimm B; Learmonth ID; Miles AW Proc Inst Mech Eng H; 2007 May; 221(4):377-84. PubMed ID: 17605395 [TBL] [Abstract][Full Text] [Related]
20. Pressure during compaction of morsellised bone gives an increase in stiffness: an in vitro study. Lunde KB; Kaehler N; Rønningen H; Fosse L J Biomech; 2008; 41(1):231-4. PubMed ID: 17692853 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]