These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 16713242)
1. Influence of the first amplifier stage in MEA systems on extracellular signal shapes. Wrobel G; Zhang Y; Krause HJ; Wolters N; Sommerhage F; Offenhäusser A; Ingebrandt S Biosens Bioelectron; 2007 Jan; 22(6):1092-6. PubMed ID: 16713242 [TBL] [Abstract][Full Text] [Related]
2. Electrical coupling of single cardiac rat myocytes to field-effect and bipolar transistors. Kind T; Issing M; Arnold R; Müller B IEEE Trans Biomed Eng; 2002 Dec; 49(12 Pt 2):1600-9. PubMed ID: 12549742 [TBL] [Abstract][Full Text] [Related]
3. N-Channel field-effect transistors with floating gates for extracellular recordings. Meyburg S; Goryll M; Moers J; Ingebrandt S; Böcker-Meffert S; Lüth H; Offenhäusser A Biosens Bioelectron; 2006 Jan; 21(7):1037-44. PubMed ID: 16029948 [TBL] [Abstract][Full Text] [Related]
4. Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays. Olsson RH; Buhl DL; Sirota AM; Buzsaki G; Wise KD IEEE Trans Biomed Eng; 2005 Jul; 52(7):1303-11. PubMed ID: 16041994 [TBL] [Abstract][Full Text] [Related]
5. Very low-noise ENG amplifier system using CMOS technology. Rieger R; Schuettler M; Pal D; Clarke C; Langlois P; Taylor J; Donaldson N IEEE Trans Neural Syst Rehabil Eng; 2006 Dec; 14(4):427-37. PubMed ID: 17190035 [TBL] [Abstract][Full Text] [Related]
6. CMOS microelectrode array for the monitoring of electrogenic cells. Heer F; Franks W; Blau A; Taschini S; Ziegler C; Hierlemann A; Baltes H Biosens Bioelectron; 2004 Sep; 20(2):358-66. PubMed ID: 15308242 [TBL] [Abstract][Full Text] [Related]
7. BioMEA: a versatile high-density 3D microelectrode array system using integrated electronics. Charvet G; Rousseau L; Billoint O; Gharbi S; Rostaing JP; Joucla S; Trevisiol M; Bourgerette A; Chauvet P; Moulin C; Goy F; Mercier B; Colin M; Spirkovitch S; Fanet H; Meyrand P; Guillemaud R; Yvert B Biosens Bioelectron; 2010 Apr; 25(8):1889-96. PubMed ID: 20106652 [TBL] [Abstract][Full Text] [Related]
8. Large-scale, high-resolution data acquisition system for extracellular recording of electrophysiological activity. Imfeld K; Neukom S; Maccione A; Bornat Y; Martinoia S; Farine PA; Koudelka-Hep M; Berdondini L IEEE Trans Biomed Eng; 2008 Aug; 55(8):2064-73. PubMed ID: 18632369 [TBL] [Abstract][Full Text] [Related]
9. Single-chip microelectronic system to interface with living cells. Heer F; Hafizovic S; Ugniwenko T; Frey U; Franks W; Perriard E; Perriard JC; Blau A; Ziegler C; Hierlemann A Biosens Bioelectron; 2007 May; 22(11):2546-53. PubMed ID: 17097869 [TBL] [Abstract][Full Text] [Related]
10. A system for MEA-based multisite stimulation. Jimbo Y; Kasai N; Torimitsu K; Tateno T; Robinson HP IEEE Trans Biomed Eng; 2003 Feb; 50(2):241-8. PubMed ID: 12665038 [TBL] [Abstract][Full Text] [Related]
11. A new 3-D finite-element model based on thin-film approximation for microelectrode array recording of extracellular action potential. Moulin C; Glière A; Barbier D; Joucla S; Yvert B; Mailley P; Guillemaud R IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):683-92. PubMed ID: 18270005 [TBL] [Abstract][Full Text] [Related]
12. Integrated circuit amplifiers for multi-electrode intracortical recording. Jochum T; Denison T; Wolf P J Neural Eng; 2009 Feb; 6(1):012001. PubMed ID: 19139560 [TBL] [Abstract][Full Text] [Related]
13. Integrated CMOS amplifier for ENG signal recording. Uranga A; Navarro X; Barniol N IEEE Trans Biomed Eng; 2004 Dec; 51(12):2188-94. PubMed ID: 15605867 [TBL] [Abstract][Full Text] [Related]
14. Micro-multi-probe electrode array to measure neural signals. Chen CH; Yao DJ; Tseng SH; Lu SW; Chiao CC; Yeh SR Biosens Bioelectron; 2009 Mar; 24(7):1911-7. PubMed ID: 19027284 [TBL] [Abstract][Full Text] [Related]
15. Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes. Otto KJ; Johnson MD; Kipke DR IEEE Trans Biomed Eng; 2006 Feb; 53(2):333-40. PubMed ID: 16485763 [TBL] [Abstract][Full Text] [Related]
16. A novel high electrode count spike recording array using an 81,920 pixel transimpedance amplifier-based imaging chip. Johnson LJ; Cohen E; Ilg D; Klein R; Skeath P; Scribner DA J Neurosci Methods; 2012 Apr; 205(2):223-32. PubMed ID: 22266817 [TBL] [Abstract][Full Text] [Related]
17. Passive neutralization of myoelectric interference from neural recording tripoles. Pachnis I; Demosthenous A; Donaldson N IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1067-74. PubMed ID: 17554825 [TBL] [Abstract][Full Text] [Related]
18. Repeated voltage biasing improves unit recordings by reducing resistive tissue impedances. Johnson MD; Otto KJ; Kipke DR IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):160-5. PubMed ID: 16003894 [TBL] [Abstract][Full Text] [Related]
19. Noise performance design of CMOS preamplifier for the active semiconductor neural probe. Kim KH; Kim SJ IEEE Trans Biomed Eng; 2000 Aug; 47(8):1097-105. PubMed ID: 10943059 [TBL] [Abstract][Full Text] [Related]
20. A microfluidic device to confine a single cardiac myocyte in a sub-nanoliter volume on planar microelectrodes for extracellular potential recordings. Werdich AA; Lima EA; Ivanov B; Ges I; Anderson ME; Wikswo JP; Baudenbacher FJ Lab Chip; 2004 Aug; 4(4):357-62. PubMed ID: 15269804 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]