BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 16713498)

  • 21. Brain mechanisms and drinking: the role of lamina terminalis-associated systems in extracellular thirst.
    Johnson AK; Cunningham JT
    Kidney Int Suppl; 1987 Aug; 21():S35-42. PubMed ID: 3306105
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The trajectory of sensory pathways from the lamina terminalis to the insular and cingulate cortex: a neuroanatomical framework for the generation of thirst.
    Hollis JH; McKinley MJ; D'Souza M; Kampe J; Oldfield BJ
    Am J Physiol Regul Integr Comp Physiol; 2008 Apr; 294(4):R1390-401. PubMed ID: 18234743
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The physiological regulation of thirst and fluid intake.
    McKinley MJ; Johnson AK
    News Physiol Sci; 2004 Feb; 19():1-6. PubMed ID: 14739394
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Neurocircuitry of fluid satiation.
    Ryan PJ
    Physiol Rep; 2018 Jun; 6(12):e13744. PubMed ID: 29932494
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Novel Cortical Mechanism for Top-Down Control of Water Intake.
    Zhao Z; Soria-Gómez E; Varilh M; Covelo A; Julio-Kalajzić F; Cannich A; Castiglione A; Vanhoutte L; Duveau A; Zizzari P; Beyeler A; Cota D; Bellocchio L; Busquets-Garcia A; Marsicano G
    Curr Biol; 2020 Dec; 30(23):4789-4798.e4. PubMed ID: 33035479
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Forebrain Thirst Circuit Drives Drinking through Negative Reinforcement.
    Leib DE; Zimmerman CA; Poormoghaddam A; Huey EL; Ahn JS; Lin YC; Tan CL; Chen Y; Knight ZA
    Neuron; 2017 Dec; 96(6):1272-1281.e4. PubMed ID: 29268095
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sensory mechanisms in the behavioral control of body fluid balance: thirst and salt appetite.
    Johnson AK; Thunhorst RL
    Prog Psychobiol Physiol Psychol; 1995; 16():145-76. PubMed ID: 11539167
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The neural basis of homeostatic and anticipatory thirst.
    Gizowski C; Bourque CW
    Nat Rev Nephrol; 2018 Jan; 14(1):11-25. PubMed ID: 29129925
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sodium deprivation and salt intake activate separate neuronal subpopulations in the nucleus of the solitary tract and the parabrachial complex.
    Geerling JC; Loewy AD
    J Comp Neurol; 2007 Oct; 504(4):379-403. PubMed ID: 17663450
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hierarchical neural architecture underlying thirst regulation.
    Augustine V; Gokce SK; Lee S; Wang B; Davidson TJ; Reimann F; Gribble F; Deisseroth K; Lois C; Oka Y
    Nature; 2018 Mar; 555(7695):204-209. PubMed ID: 29489747
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Dipsogenic behavior].
    Slătineanu SM; Boişteanu D; Costuleanu A
    Rev Med Chir Soc Med Nat Iasi; 1999; 103(1-2):49-56. PubMed ID: 10756885
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vasopressin and the Regulation of Thirst.
    Bichet DG
    Ann Nutr Metab; 2018; 72 Suppl 2():3-7. PubMed ID: 29925072
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The subfornical organ and organum vasculosum of the lamina terminalis: Critical roles in cardiovascular regulation and the control of fluid balance.
    Fry WM; Ferguson AV
    Handb Clin Neurol; 2021; 180():203-215. PubMed ID: 34225930
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thirst neurons anticipate the homeostatic consequences of eating and drinking.
    Zimmerman CA; Lin YC; Leib DE; Guo L; Huey EL; Daly GE; Chen Y; Knight ZA
    Nature; 2016 Sep; 537(7622):680-684. PubMed ID: 27487211
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Human cortical responses to water in the mouth, and the effects of thirst.
    de Araujo IE; Kringelbach ML; Rolls ET; McGlone F
    J Neurophysiol; 2003 Sep; 90(3):1865-76. PubMed ID: 12773496
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative study of the effects of electrical stimulation in the nucleus accumbens, the mediodorsal thalamic nucleus and the bed nucleus of the stria terminalis in rats with schedule-induced polydipsia.
    van Kuyck K; Brak K; Das J; Rizopoulos D; Nuttin B
    Brain Res; 2008 Mar; 1201():93-9. PubMed ID: 18299120
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Control of thirst and salt appetite in rats: early inhibition of water and NaCl ingestion.
    Stricker EM; Hoffmann ML
    Appetite; 2006 Mar; 46(2):234-7. PubMed ID: 16499997
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Angiotensin and the lamina terminalis: illustrations of a complex unity.
    Lind RW
    Clin Exp Hypertens A; 1988; 10 Suppl 1():79-105. PubMed ID: 3072129
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Forebrain osmotic regulation of the sympathetic nervous system.
    Stocker SD; Osborn JL; Carmichael SP
    Clin Exp Pharmacol Physiol; 2008 May; 35(5-6):695-700. PubMed ID: 18067592
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neural pathways from the lamina terminalis influencing cardiovascular and body fluid homeostasis.
    McKinley MJ; Allen AM; May CN; McAllen RM; Oldfield BJ; Sly D; Mendelsohn FA
    Clin Exp Pharmacol Physiol; 2001 Dec; 28(12):990-2. PubMed ID: 11903300
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.