These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 16713560)

  • 1. The timing of developmental transitions in plants.
    Bäurle I; Dean C
    Cell; 2006 May; 125(4):655-64. PubMed ID: 16713560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constitutive expression of CsGI alters critical night length for flowering by changing the photo-sensitive phase of anti-florigen induction in chrysanthemum.
    Oda A; Higuchi Y; Hisamatsu T
    Plant Sci; 2020 Apr; 293():110417. PubMed ID: 32081265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoperiod-insensitive floral transition in chrysanthemum induced by constitutive expression of chimeric repressor CsLHY-SRDX.
    Oda A; Higuchi Y; Hisamatsu T
    Plant Sci; 2017 Jun; 259():86-93. PubMed ID: 28483056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The circadian clock-associated gene gigantea1 affects maize developmental transitions.
    Bendix C; Mendoza JM; Stanley DN; Meeley R; Harmon FG
    Plant Cell Environ; 2013 Jul; 36(7):1379-90. PubMed ID: 23336247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. OsMADS51 is a short-day flowering promoter that functions upstream of Ehd1, OsMADS14, and Hd3a.
    Kim SL; Lee S; Kim HJ; Nam HG; An G
    Plant Physiol; 2007 Dec; 145(4):1484-94. PubMed ID: 17951465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circadian clock-regulated physiological outputs: dynamic responses in nature.
    Kinmonth-Schultz HA; Golembeski GS; Imaizumi T
    Semin Cell Dev Biol; 2013 May; 24(5):407-13. PubMed ID: 23435352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Over-expression of the photoperiod response regulator ZmCCT10 modifies plant architecture, flowering time and inflorescence morphology in maize.
    Stephenson E; Estrada S; Meng X; Ourada J; Muszynski MG; Habben JE; Danilevskaya ON
    PLoS One; 2019; 14(2):e0203728. PubMed ID: 30726207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pea LATE BLOOMER1 is a GIGANTEA ortholog with roles in photoperiodic flowering, deetiolation, and transcriptional regulation of circadian clock gene homologs.
    Hecht V; Knowles CL; Vander Schoor JK; Liew LC; Jones SE; Lambert MJ; Weller JL
    Plant Physiol; 2007 Jun; 144(2):648-61. PubMed ID: 17468223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ZCN8 encodes a potential orthologue of Arabidopsis FT florigen that integrates both endogenous and photoperiod flowering signals in maize.
    Lazakis CM; Coneva V; Colasanti J
    J Exp Bot; 2011 Oct; 62(14):4833-42. PubMed ID: 21730358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental Signal-Dependent Regulation of Flowering Time in Rice.
    Shim JS; Jang G
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32858992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The multifaceted roles of FLOWERING LOCUS T in plant development.
    Pin PA; Nilsson O
    Plant Cell Environ; 2012 Oct; 35(10):1742-55. PubMed ID: 22697796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue-specific regulation of flowering by photoreceptors.
    Endo M; Araki T; Nagatani A
    Cell Mol Life Sci; 2016 Feb; 73(4):829-39. PubMed ID: 26621669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of phytochrome-mediated light signals on the developmental acquisition of photoperiod sensitivity in rice.
    Yoshitake Y; Yokoo T; Saito H; Tsukiyama T; Quan X; Zikihara K; Katsura H; Tokutomi S; Aboshi T; Mori N; Inoue H; Nishida H; Kohchi T; Teraishi M; Okumoto Y; Tanisaka T
    Sci Rep; 2015 Jan; 5():7709. PubMed ID: 25573482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoperiodic regulation of flowering time through periodic histone deacetylation of the florigen gene FT.
    Gu X; Wang Y; He Y
    PLoS Biol; 2013 Sep; 11(9):e1001649. PubMed ID: 24019760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flowering responses to light and temperature.
    Li L; Li X; Liu Y; Liu H
    Sci China Life Sci; 2016 Apr; 59(4):403-8. PubMed ID: 26687726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flowering time regulation: photoperiod- and temperature-sensing in leaves.
    Song YH; Ito S; Imaizumi T
    Trends Plant Sci; 2013 Oct; 18(10):575-83. PubMed ID: 23790253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crosstalk in the darkness: bulb vernalization activates meristem transition via circadian rhythm and photoperiodic pathway.
    Ben Michael TE; Faigenboim A; Shemesh-Mayer E; Forer I; Gershberg C; Shafran H; Rabinowitch HD; Kamenetsky-Goldstein R
    BMC Plant Biol; 2020 Feb; 20(1):77. PubMed ID: 32066385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chlamydomonas CONSTANS and the evolution of plant photoperiodic signaling.
    Serrano G; Herrera-Palau R; Romero JM; Serrano A; Coupland G; Valverde F
    Curr Biol; 2009 Mar; 19(5):359-68. PubMed ID: 19230666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effect of Fluctuations in Photoperiod and Ambient Temperature on the Timing of Flowering: Time to Move on Natural Environmental Conditions.
    Song YH
    Mol Cells; 2016 Oct; 39(10):715-721. PubMed ID: 27788575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constitutive expression of the GIGANTEA ortholog affects circadian rhythms and suppresses one-shot induction of flowering in Pharbitis nil, a typical short-day plant.
    Higuchi Y; Sage-Ono K; Sasaki R; Ohtsuki N; Hoshino A; Iida S; Kamada H; Ono M
    Plant Cell Physiol; 2011 Apr; 52(4):638-50. PubMed ID: 21382978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.