BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 16713575)

  • 1. In vivo molecular evolution reveals biophysical origins of organismal fitness.
    Couñago R; Chen S; Shamoo Y
    Mol Cell; 2006 May; 22(4):441-9. PubMed ID: 16713575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An adaptive mutation in adenylate kinase that increases organismal fitness is linked to stability-activity trade-offs.
    Couñago R; Wilson CJ; Peña MI; Wittung-Stafshede P; Shamoo Y
    Protein Eng Des Sel; 2008 Jan; 21(1):19-27. PubMed ID: 18093993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Missense meanderings in sequence space: a biophysical view of protein evolution.
    DePristo MA; Weinreich DM; Hartl DL
    Nat Rev Genet; 2005 Sep; 6(9):678-87. PubMed ID: 16074985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the thermostability of Geobacillus stearothermophilus xylanase XT6 by directed evolution and site-directed mutagenesis.
    Zhang ZG; Yi ZL; Pei XQ; Wu ZL
    Bioresour Technol; 2010 Dec; 101(23):9272-8. PubMed ID: 20691586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary fates within a microbial population highlight an essential role for protein folding during natural selection.
    Peña MI; Davlieva M; Bennett MR; Olson JS; Shamoo Y
    Mol Syst Biol; 2010 Jul; 6():387. PubMed ID: 20631681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effectiveness and limitations of local structural entropy optimization in the thermal stabilization of mesophilic and thermophilic adenylate kinases.
    Moon S; Bannen RM; Rutkoski TJ; Phillips GN; Bae E
    Proteins; 2014 Oct; 82(10):2631-42. PubMed ID: 24931334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of static and dynamic domains in stability and catalysis of adenylate kinase.
    Bae E; Phillips GN
    Proc Natl Acad Sci U S A; 2006 Feb; 103(7):2132-7. PubMed ID: 16452168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability.
    Reetz MT; Carballeira JD; Vogel A
    Angew Chem Int Ed Engl; 2006 Nov; 45(46):7745-51. PubMed ID: 17075931
    [No Abstract]   [Full Text] [Related]  

  • 9. Structural basis of selection and thermostability of laboratory evolved Bacillus subtilis lipase.
    Acharya P; Rajakumara E; Sankaranarayanan R; Rao NM
    J Mol Biol; 2004 Aug; 341(5):1271-81. PubMed ID: 15321721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new way of enhancing the thermostability of proteases.
    Imanaka T; Shibazaki M; Takagi M
    Nature; 1986 Dec 18-31; 324(6098):695-7. PubMed ID: 3540685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution stability and variability in a simple model of globular proteins.
    Sear RP
    J Chem Phys; 2004 Jan; 120(2):998-1005. PubMed ID: 15267937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of a single gene highlights the complexity underlying molecular descriptions of fitness.
    Peña MI; Van Itallie E; Bennett MR; Shamoo Y
    Chaos; 2010 Jun; 20(2):026107. PubMed ID: 20590336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural selection for kinetic stability is a likely origin of correlations between mutational effects on protein energetics and frequencies of amino acid occurrences in sequence alignments.
    Godoy-Ruiz R; Ariza F; Rodriguez-Larrea D; Perez-Jimenez R; Ibarra-Molero B; Sanchez-Ruiz JM
    J Mol Biol; 2006 Oct; 362(5):966-78. PubMed ID: 16935299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structures and analysis of highly homologous psychrophilic, mesophilic, and thermophilic adenylate kinases.
    Bae E; Phillips GN
    J Biol Chem; 2004 Jul; 279(27):28202-8. PubMed ID: 15100224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Homologous locus of genomes of Bacillus subtilis and Bacillus stearothermophilus, containing levansucrase and levanase genes].
    Naumov DG
    Mol Biol (Mosk); 1999; 33(2):207-10. PubMed ID: 10377564
    [No Abstract]   [Full Text] [Related]  

  • 16. Evolutionary molecular engineering by random elongation mutagenesis.
    Matsuura T; Miyai K; Trakulnaleamsai S; Yomo T; Shima Y; Miki S; Yamamoto K; Urabe I
    Nat Biotechnol; 1999 Jan; 17(1):58-61. PubMed ID: 9920270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directed evolution of Bacillus subtilis lipase A by use of enantiomeric phosphonate inhibitors: crystal structures and phage display selection.
    Dröge MJ; Boersma YL; van Pouderoyen G; Vrenken TE; Rüggeberg CJ; Reetz MT; Dijkstra BW; Quax WJ
    Chembiochem; 2006 Jan; 7(1):149-57. PubMed ID: 16342303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermostable variants of the recombinant xylanase A from Bacillus subtilis produced by directed evolution show reduced heat capacity changes.
    Ruller R; Deliberto L; Ferreira TL; Ward RJ
    Proteins; 2008 Mar; 70(4):1280-93. PubMed ID: 17876824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes.
    Reetz MT; Carballeira JD
    Nat Protoc; 2007; 2(4):891-903. PubMed ID: 17446890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extreme temperature tolerance of a hyperthermophilic protein coupled to residual structure in the unfolded state.
    Wallgren M; Adén J; Pylypenko O; Mikaelsson T; Johansson LB; Rak A; Wolf-Watz M
    J Mol Biol; 2008 Jun; 379(4):845-58. PubMed ID: 18471828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.