These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 16713900)
1. Chemoproteomics-driven drug discovery: addressing high attrition rates. Hall SE Drug Discov Today; 2006 Jun; 11(11-12):495-502. PubMed ID: 16713900 [TBL] [Abstract][Full Text] [Related]
2. [Development of antituberculous drugs: current status and future prospects]. Tomioka H; Namba K Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921 [TBL] [Abstract][Full Text] [Related]
4. Importance of molecular computer modeling in anticancer drug development. Geromichalos GD J BUON; 2007 Sep; 12 Suppl 1():S101-18. PubMed ID: 17935268 [TBL] [Abstract][Full Text] [Related]
5. Recent progress in fragment-based lead discovery. Schulz MN; Hubbard RE Curr Opin Pharmacol; 2009 Oct; 9(5):615-21. PubMed ID: 19477685 [TBL] [Abstract][Full Text] [Related]
6. Yeast genomics and proteomics in drug discovery and target validation. Parsons AB; Geyer R; Hughes TR; Boone C Prog Cell Cycle Res; 2003; 5():159-66. PubMed ID: 14593709 [TBL] [Abstract][Full Text] [Related]
7. Peptides as tools in drug discovery. Grøn H; Hyde-DeRuyscher R Curr Opin Drug Discov Devel; 2000 Sep; 3(5):636-45. PubMed ID: 19649892 [TBL] [Abstract][Full Text] [Related]
8. The 7 TM G-protein-coupled receptor target family. Jacoby E; Bouhelal R; Gerspacher M; Seuwen K ChemMedChem; 2006 Aug; 1(8):761-82. PubMed ID: 16902930 [TBL] [Abstract][Full Text] [Related]
9. Which aspects of HTS are empirically correlated with downstream success? Bender A; Bojanic D; Davies JW; Crisman TJ; Mikhailov D; Scheiber J; Jenkins JL; Deng Z; Hill WA; Popov M; Jacoby E; Glick M Curr Opin Drug Discov Devel; 2008 May; 11(3):327-37. PubMed ID: 18428086 [TBL] [Abstract][Full Text] [Related]
10. Learning from the data: mining of large high-throughput screening databases. Yan SF; King FJ; He Y; Caldwell JS; Zhou Y J Chem Inf Model; 2006; 46(6):2381-95. PubMed ID: 17125181 [TBL] [Abstract][Full Text] [Related]
11. From purified GPCRs to drug discovery: the promise of protein-based methodologies. Alkhalfioui F; Magnin T; Wagner R Curr Opin Pharmacol; 2009 Oct; 9(5):629-35. PubMed ID: 19443270 [TBL] [Abstract][Full Text] [Related]
13. Aptamers and aptazymes: accelerating small molecule drug discovery. Burgstaller P; Jenne A; Blind M Curr Opin Drug Discov Devel; 2002 Sep; 5(5):690-700. PubMed ID: 12630289 [TBL] [Abstract][Full Text] [Related]
14. Structural proteomics in drug discovery. Tari LW; Rosenberg M; Schryvers AB Expert Rev Proteomics; 2005 Aug; 2(4):511-9. PubMed ID: 16097885 [TBL] [Abstract][Full Text] [Related]
15. Structure-based design of molecular cancer therapeutics. van Montfort RL; Workman P Trends Biotechnol; 2009 May; 27(5):315-28. PubMed ID: 19339067 [TBL] [Abstract][Full Text] [Related]
16. Inhibitors of FabI, an enzyme drug target in the bacterial fatty acid biosynthesis pathway. Lu H; Tonge PJ Acc Chem Res; 2008 Jan; 41(1):11-20. PubMed ID: 18193820 [TBL] [Abstract][Full Text] [Related]
17. Finding the target after screening the phenotype. Hart CP Drug Discov Today; 2005 Apr; 10(7):513-9. PubMed ID: 15809197 [TBL] [Abstract][Full Text] [Related]
18. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials. EFSA GMO Panel Working Group on Animal Feeding Trials Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408 [TBL] [Abstract][Full Text] [Related]
19. Informatics solutions for high-throughput proteomics. Topaloglou T Drug Discov Today; 2006 Jun; 11(11-12):509-16. PubMed ID: 16713902 [TBL] [Abstract][Full Text] [Related]
20. Chemoproteomic approaches to drug target identification and drug profiling. Bantscheff M; Drewes G Bioorg Med Chem; 2012 Mar; 20(6):1973-8. PubMed ID: 22130419 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]