These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 16714088)

  • 21. An Aspergillus niger esterase (ferulic acid esterase III) and a recombinant Pseudomonas fluorescens subsp. cellulosa esterase (Xy1D) release a 5-5' ferulic dehydrodimer (diferulic acid) from barley and wheat cell walls.
    Bartolomé B; Faulds CB; Kroon PA; Waldron K; Gilbert HJ; Hazlewood G; Williamson G
    Appl Environ Microbiol; 1997 Jan; 63(1):208-12. PubMed ID: 8979352
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhancement of the hydrophilic feruloyl glycerol synthesis using A-35 as a catalyst and its functional characteristics.
    Wang X; Chen X; Sun S; Xu R
    Food Funct; 2021 Oct; 12(20):9763-9772. PubMed ID: 34664580
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Solvent-free enzymatic preparation of feruloylated monoacylglycerols optimized by response surface methodology.
    Sun SD; Shan L; Liu YF; Jin QZ; Zhang LX; Wang XG
    J Agric Food Chem; 2008 Jan; 56(2):442-7. PubMed ID: 18092748
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemical and thermal stability of ferulic acid esterase-III from Aspergillus niger.
    Williamson G; Vallejo J
    Int J Biol Macromol; 1997 Aug; 21(1-2):163-7. PubMed ID: 9283031
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Overexpression of Aspergillus tubingensis faeA in protease-deficient Aspergillus niger enables ferulic acid production from plant material.
    Zwane EN; Rose SH; van Zyl WH; Rumbold K; Viljoen-Bloom M
    J Ind Microbiol Biotechnol; 2014 Jun; 41(6):1027-34. PubMed ID: 24664515
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production of a chimeric enzyme tool associating the Trichoderma reesei swollenin with the Aspergillus niger feruloyl esterase A for release of ferulic acid.
    Levasseur A; Saloheimo M; Navarro D; Andberg M; Monot F; Nakari-Setälä T; Asther M; Record E
    Appl Microbiol Biotechnol; 2006 Dec; 73(4):872-80. PubMed ID: 16957894
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biotransformation of ferulic acid to 4-vinylguaiacol by a wild and a diploid strain of Aspergillus niger.
    Baqueiro-Peña I; Rodríguez-Serrano G; González-Zamora E; Augur C; Loera O; Saucedo-Castañeda G
    Bioresour Technol; 2010 Jun; 101(12):4721-4. PubMed ID: 20153180
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Purification and characterization of a chlorogenic acid hydrolase from Aspergillus niger catalysing the hydrolysis of chlorogenic acid.
    Asther M; Estrada Alvarado MI; Haon M; Navarro D; Asther M; Lesage-Meessen L; Record E
    J Biotechnol; 2005 Jan; 115(1):47-56. PubMed ID: 15607224
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biochemical and Structural Analyses of Two Cryptic Esterases in Bacteroides intestinalis and their Synergistic Activities with Cognate Xylanases.
    Wefers D; Cavalcante JJV; Schendel RR; Deveryshetty J; Wang K; Wawrzak Z; Mackie RI; Koropatkin NM; Cann I
    J Mol Biol; 2017 Aug; 429(16):2509-2527. PubMed ID: 28669823
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Carrier-bound and carrier-free immobilization of type A feruloyl esterase from Aspergillus niger: Searching for an operationally stable heterogeneous biocatalyst for the synthesis of butyl hydroxycinnamates.
    Grajales-Hernández DA; Velasco-Lozano S; Armendáriz-Ruiz MA; Rodríguez-González JA; Camacho-Ruíz RM; Asaff-Torres A; López-Gallego F; Mateos-Díaz JC
    J Biotechnol; 2020 Jun; 316():6-16. PubMed ID: 32305629
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The ferulic acid esterases of Chrysosporium lucknowense C1: purification, characterization and their potential application in biorefinery.
    Kühnel S; Pouvreau L; Appeldoorn MM; Hinz SW; Schols HA; Gruppen H
    Enzyme Microb Technol; 2012 Jan; 50(1):77-85. PubMed ID: 22133444
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Production and biochemical characterization of a type B ferulic acid esterase from Streptomyces ambofaciens.
    Kheder F; Delaunay S; Abo-Chameh G; Paris C; Muniglia L; Girardin M
    Can J Microbiol; 2009 Jun; 55(6):729-38. PubMed ID: 19767844
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ferulic acid-coupled chitosan: thermal stability and utilization as an antioxidant for biodegradable active packaging film.
    Woranuch S; Yoksan R; Akashi M
    Carbohydr Polym; 2015 Jan; 115():744-51. PubMed ID: 25439957
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Cloning of feruloyl esterase gene from Aspergillus niger h408 and high-efficient expression in Pichia pastoris].
    Zhou Y; Liu X; Chen J; Hu H; Hou Y
    Wei Sheng Wu Xue Bao; 2014 Aug; 54(8):876-81. PubMed ID: 25345018
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 1,3-Diferuloyl-sn-glycerol from the biocatalytic transesterification of ethyl 4-hydroxy-3-methoxy cinnamic acid (ethyl ferulate) and soybean oil.
    Compton DL; Laszlo JA
    Biotechnol Lett; 2009 Jun; 31(6):889-96. PubMed ID: 19238329
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of active site residues in a ferulic acid esterase (FAE-III) from Aspergillus niger.
    Aliwan FO; Williamson G
    Biochem Soc Trans; 1998 May; 26(2):S164. PubMed ID: 9649839
    [No Abstract]   [Full Text] [Related]  

  • 37. A type B feruloyl esterase from Aspergillus nidulans with broad pH applicability.
    Shin HD; Chen RR
    Appl Microbiol Biotechnol; 2007 Jan; 73(6):1323-30. PubMed ID: 17043824
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of a novel lipolytic enzyme from Aspergillus oryzae.
    Koseki T; Asai S; Saito N; Mori M; Sakaguchi Y; Ikeda K; Shiono Y
    Appl Microbiol Biotechnol; 2013 Jun; 97(12):5351-7. PubMed ID: 23001008
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional co-expression of a fungal ferulic acid esterase and a β-1,4 endoxylanase in Festuca arundinacea (tall fescue) modifies post-harvest cell wall deconstruction.
    Buanafina MM; Dalton S; Langdon T; Timms-Taravella E; Shearer EA; Morris P
    Planta; 2015 Jul; 242(1):97-111. PubMed ID: 25854601
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contributions of a unique β-clamp to substrate recognition illuminates the molecular basis of exolysis in ferulic acid esterases.
    Gruninger RJ; Cote C; McAllister TA; Abbott DW
    Biochem J; 2016 Apr; 473(7):839-49. PubMed ID: 27026397
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.