These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 16714102)

  • 1. Characterisation of sugar cane straw waste as pozzolanic material for construction: calcining temperature and kinetic parameters.
    Frías M; Villar-Cociña E; Valencia-Morales E
    Waste Manag; 2007; 27(4):533-8. PubMed ID: 16714102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of grinding and heating on Ni2+ uptake properties of waste paper sludge.
    Kumar Jha V; Kameshima Y; Nakajima A; Okada K; MacKenzie KJ
    J Environ Manage; 2006 Sep; 80(4):363-71. PubMed ID: 16556479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Random ionic mobility on blended cements exposed to aggressive environments.
    García R; Rubio V; Vegas I; Frías M
    J Hazard Mater; 2009 Sep; 168(2-3):1602-8. PubMed ID: 19380202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative Comparison of Binary Mix of Agro-Industrial Pozzolanic Additions for Elaborating Ternary Cements: Kinetic Parameters.
    Villar-Cociña E; Frías M; Savastano H; Rodier L; Rojas MIS; Bosque IFSD; Medina C
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34072511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quick monitoring of pozzolanic reactivity of waste ashes.
    Sinthaworn S; Nimityongskul P
    Waste Manag; 2009 May; 29(5):1526-31. PubMed ID: 19131237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of thermally activated paper sludge on the behaviour of blended cements subjected to saline and non-saline environments.
    García R; Rubio V; Vegas I; Frías M
    Environ Sci Pollut Res Int; 2009 May; 16(3):274-7. PubMed ID: 18979125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyrolysis of olive residue and sugar cane bagasse: non-isothermal thermogravimetric kinetic analysis.
    Ounas A; Aboulkas A; El Harfi K; Bacaoui A; Yaacoubi A
    Bioresour Technol; 2011 Dec; 102(24):11234-8. PubMed ID: 22004591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clarification properties of trash and stalk tissues from sugar cane.
    Eggleston G; Grisham M; Antoine A
    J Agric Food Chem; 2010 Jan; 58(1):366-73. PubMed ID: 19994855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of Brazilian sugarcane bagasse ash in concrete as sand replacement.
    Sales A; Lima SA
    Waste Manag; 2010 Jun; 30(6):1114-22. PubMed ID: 20163947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal treatment and vitrification of boiler ash from a municipal solid waste incinerator.
    Yang Y; Xiao Y; Voncken JH; Wilson N
    J Hazard Mater; 2008 Jun; 154(1-3):871-9. PubMed ID: 18077086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of ceramic roof tile wastes as pozzolanic admixture.
    Lavat AE; Trezza MA; Poggi M
    Waste Manag; 2009 May; 29(5):1666-74. PubMed ID: 19124234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Durability of class C fly ash belite cement in simulated sodium chloride radioactive liquid waste: influence of temperature.
    Guerrero A; Goñi S; Allegro VR
    J Hazard Mater; 2009 Mar; 162(2-3):1099-102. PubMed ID: 18614284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of the Pozzolanic Reactivity of Sugar Cane Straw Ashes (SCSA) Burned under Controlled Conditions.
    Rodrigues MS; Payá J; Soriano L; Monzó J; Borrachero MV; Savastano H; Beraldo AL
    Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cement replacement by sugar cane bagasse ash: CO2 emissions reduction and potential for carbon credits.
    Fairbairn EM; Americano BB; Cordeiro GC; Paula TP; Toledo Filho RD; Silvoso MM
    J Environ Manage; 2010 Sep; 91(9):1864-71. PubMed ID: 20493626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ethanol/water pulps from sugar cane straw and their biobleaching with xylanase from Bacillus pumilus.
    Moriya RY; Gonçalves AR; Duarte MC
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):501-13. PubMed ID: 18478412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recycling municipal incinerator fly- and scrubber-ash into fused slag for the substantial replacement of cement in cement-mortars.
    Lee TC; Rao MK
    Waste Manag; 2009 Jun; 29(6):1952-9. PubMed ID: 19216067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes.
    Alvarez-Ayuso E; Querol X; Plana F; Alastuey A; Moreno N; Izquierdo M; Font O; Moreno T; Diez S; Vázquez E; Barra M
    J Hazard Mater; 2008 Jun; 154(1-3):175-83. PubMed ID: 18006153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recycling of ash from mezcal industry: a renewable source of lime.
    Chávez-Guerrero L; Flores J; Kharissov BI
    Chemosphere; 2010 Oct; 81(5):633-8. PubMed ID: 20851456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Valorization of sugarcane bagasse ash: producing glass-ceramic materials.
    Teixeira SR; Magalhães RS; Arenales A; Souza AE; Romero M; Rincón JM
    J Environ Manage; 2014 Feb; 134():15-9. PubMed ID: 24463731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on pyrolysis of typical medical waste materials by using TG-FTIR analysis.
    Zhu HM; Yan JH; Jiang XG; Lai YE; Cen KF
    J Hazard Mater; 2008 May; 153(1-2):670-6. PubMed ID: 17936504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.