These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 16714126)

  • 1. The canonical Wnt pathway in embryonic axis polarity.
    Croce JC; McClay DR
    Semin Cell Dev Biol; 2006 Apr; 17(2):168-74. PubMed ID: 16714126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wnt signaling in the early sea urchin embryo.
    Kumburegama S; Wikramanayake AH
    Methods Mol Biol; 2008; 469():187-99. PubMed ID: 19109711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Wnt-FoxQ2-nodal pathway links primary and secondary axis specification in sea urchin embryos.
    Yaguchi S; Yaguchi J; Angerer RC; Angerer LM
    Dev Cell; 2008 Jan; 14(1):97-107. PubMed ID: 18194656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting expression patterns of Wnt pathway components in sea urchin embryos.
    Bince JM; Peng CF; Wikramanayake AH
    Methods Mol Biol; 2008; 469():201-11. PubMed ID: 19109712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left-right axes in deuterostomes.
    Duboc V; Lepage T
    J Exp Zool B Mol Dev Evol; 2008 Jan; 310(1):41-53. PubMed ID: 16838294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TCF is the nuclear effector of the beta-catenin signal that patterns the sea urchin animal-vegetal axis.
    Vonica A; Weng W; Gumbiner BM; Venuti JM
    Dev Biol; 2000 Jan; 217(2):230-43. PubMed ID: 10625549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. beta-Catenin is essential for patterning the maternally specified animal-vegetal axis in the sea urchin embryo.
    Wikramanayake AH; Huang L; Klein WH
    Proc Natl Acad Sci U S A; 1998 Aug; 95(16):9343-8. PubMed ID: 9689082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The expression and distribution of Wnt and Wnt receptor mRNAs during early sea urchin development.
    Stamateris RE; Rafiq K; Ettensohn CA
    Gene Expr Patterns; 2010 Jan; 10(1):60-4. PubMed ID: 19853669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GSK3beta/shaggy mediates patterning along the animal-vegetal axis of the sea urchin embryo.
    Emily-Fenouil F; Ghiglione C; Lhomond G; Lepage T; Gache C
    Development; 1998 Jul; 125(13):2489-98. PubMed ID: 9609832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential regulation of disheveled in a novel vegetal cortical domain in sea urchin eggs and embryos: implications for the localized activation of canonical Wnt signaling.
    Peng CJ; Wikramanayake AH
    PLoS One; 2013; 8(11):e80693. PubMed ID: 24236196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patterning mechanisms in the evolution of derived developmental life histories: the role of Wnt signaling in axis formation of the direct-developing sea urchin Heliocidaris erythrogramma.
    Kauffman JS; Raff RA
    Dev Genes Evol; 2003 Dec; 213(12):612-24. PubMed ID: 14618401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micromere-derived signal regulates larval left-right polarity during sea urchin development.
    Kitazawa C; Amemiya S
    J Exp Zool A Ecol Genet Physiol; 2007 May; 307(5):249-62. PubMed ID: 17351911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Canonical and non-canonical Wnt signaling pathways define the expression domains of Frizzled 5/8 and Frizzled 1/2/7 along the early anterior-posterior axis in sea urchin embryos.
    Range RC
    Dev Biol; 2018 Dec; 444(2):83-92. PubMed ID: 30332609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silencing of Smed-betacatenin1 generates radial-like hypercephalized planarians.
    Iglesias M; Gomez-Skarmeta JL; Saló E; Adell T
    Development; 2008 Apr; 135(7):1215-21. PubMed ID: 18287199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nodal/activin signaling establishes oral-aboral polarity in the early sea urchin embryo.
    Flowers VL; Courteau GR; Poustka AJ; Weng W; Venuti JM
    Dev Dyn; 2004 Dec; 231(4):727-40. PubMed ID: 15517584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Animal-vegetal axis patterning mechanisms in the early sea urchin embryo.
    Angerer LM; Angerer RC
    Dev Biol; 2000 Feb; 218(1):1-12. PubMed ID: 10644406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An ATF2-based luciferase reporter to monitor non-canonical Wnt signaling in Xenopus embryos.
    Ohkawara B; Niehrs C
    Dev Dyn; 2011 Jan; 240(1):188-94. PubMed ID: 21128306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of Xenopus developmental biology in unraveling Wnt signalling and antero-posterior axis formation.
    Niehrs C
    Dev Biol; 2022 Feb; 482():1-6. PubMed ID: 34818531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frizzled5/8 is required in secondary mesenchyme cells to initiate archenteron invagination during sea urchin development.
    Croce J; Duloquin L; Lhomond G; McClay DR; Gache C
    Development; 2006 Feb; 133(3):547-57. PubMed ID: 16396908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. XTsh3 is an essential enhancing factor of canonical Wnt signaling in Xenopus axial determination.
    Onai T; Matsuo-Takasaki M; Inomata H; Aramaki T; Matsumura M; Yakura R; Sasai N; Sasai Y
    EMBO J; 2007 May; 26(9):2350-60. PubMed ID: 17431396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.