BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 167156)

  • 1. Studies on convulsants in the isolated frog spinal cord. II. Effects on root potentials.
    Barker JL; Nicoll RA; Padjen A
    J Physiol; 1975 Mar; 245(3):537-48. PubMed ID: 167156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on convulsants in the isolated frog spinal cord. I. Antagonism of amino acid responses.
    Barker JL; Nicoll RA; Padjen A
    J Physiol; 1975 Mar; 245(3):521-36. PubMed ID: 1079871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of amino acids and antagonists on the isolated hemisected spinal cord of the immature rat.
    Evans RH
    Br J Pharmacol; 1978 Feb; 62(2):171-6. PubMed ID: 623933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of depressant amino acids and antagonists on an in vitro spinal cord preparation from the adult rat.
    Long SK; Evans RH; Krijzer F
    Neuropharmacology; 1989 Jul; 28(7):683-8. PubMed ID: 2761679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dendrobine, an antagonist of beta-alanine, taurine and of presynaptic inhibition in the frog spinal cord.
    Kudo Y; Tanaka A; Yamada K
    Br J Pharmacol; 1983 Apr; 78(4):709-15. PubMed ID: 6405832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The pharmacology and ionic dependency of amino acid responses in the frog spinal cord.
    Barker JL; Nicoll RA
    J Physiol; 1973 Jan; 228(2):259-77. PubMed ID: 4346988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dorsal root potentials in the isolated frog spinal cord: amino acid neurotransmitters and magnesium ions.
    Hackman JC; Davidoff RA
    Neuroscience; 1991; 41(1):61-9. PubMed ID: 1676140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Actions of picrotoxinin and related compounds on the frog spinal cord: the role of a hydroxyl-group at the 6-position in antagonizing the actions of amino acids and presynaptic inhibition.
    Kudo Y; Niwa H; Tanaka A; Yamada K
    Br J Pharmacol; 1984 Feb; 81(2):373-80. PubMed ID: 6608389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of neutral amino acids on neurons and synaptic transmission in the isolated rat spinal cord].
    Abramets II; Kozlova NA; Komissarov IV
    Fiziol Zh SSSR Im I M Sechenova; 1981 Aug; 67(8):1160-7. PubMed ID: 6269912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The organization of primary afferent depolarization in the isolated spinal cord of the frog.
    Carpenter DO; Rudomin P
    J Physiol; 1973 Mar; 229(2):471-93. PubMed ID: 4541991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Further evidence in support of taurine as a mediator of synaptic transmission in the frog spinal cord.
    Padjen AL; Mitsoglou GM; Hassessian H
    Brain Res; 1989 May; 488(1-2):288-96. PubMed ID: 2787189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The action of acetylcholine antagonists on amino acid responses in the frog spinal cord in vitro.
    Nicoll RA
    Br J Pharmacol; 1975 Dec; 55(4):449-58. PubMed ID: 1082355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of GABA and serotonin in the mediation of raphe-evoked spinal cord dorsal root potentials.
    Proudfit HK; Larson AA; Anderson EG
    Brain Res; 1980 Aug; 195(1):149-65. PubMed ID: 6249439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study of the interaction between motoneurones in the frog spinal cord.
    Grinnell AD
    J Physiol; 1966 Feb; 182(3):612-48. PubMed ID: 5943003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibitory postsynaptic actions of taurine, GABA and other amino acids on motoneurons of the isolated frog spinal cord.
    Sonnhof U; Grafe P; Krumnikl J; Linder M; Schindler L
    Brain Res; 1975 Dec; 100(2):327-41. PubMed ID: 128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of low concentrations of divalent cations to demonstrate a role for N-methyl-D-aspartate receptors in synaptic transmission in amphibian spinal cord.
    Smith PA
    Br J Pharmacol; 1982 Oct; 77(2):363-73. PubMed ID: 6291690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical interaction between antidromically stimulated frog motoneurones and dorsal root afferents: enhancement by gallamine and TEA.
    Grinnell AD
    J Physiol; 1970 Sep; 210(1):17-43. PubMed ID: 5500776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacologic analysis of inhibition produced by last-order intermediate nucleus interneurons mediating nonreciprocal inhibition of motoneurons in cat spinal cord.
    Rudomin P; Jiménez I; Quevedo J; Solodkin M
    J Neurophysiol; 1990 Jan; 63(1):147-60. PubMed ID: 2299379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The development of the dorsal root potential and the responsiveness of primary afferent fibers to gamma-aminobutyric acid in the spinal cord of rat fetuses.
    Seno N; Saito K
    Brain Res; 1985 Jan; 349(1-2):11-6. PubMed ID: 3986580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dorsal root potentials and changes in extracellular potassium in the spinal cord of the frog.
    Nicoll RA
    J Physiol; 1979 May; 290(2):113-27. PubMed ID: 224169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.