These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 1671587)

  • 1. Excitotoxic brain injury suppresses striatal high-affinity glutamate uptake in perinatal rats.
    Hu B; McDonald JW; Johnston MV; Silverstein FS
    J Neurochem; 1991 Mar; 56(3):933-7. PubMed ID: 1671587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The glutamate uptake inhibitor L-trans-2,4-pyrrolidine dicarboxylate is neurotoxic in neonatal rat brain.
    Barks JD; Silverstein FS
    Mol Chem Neuropathol; 1994; 23(2-3):201-15. PubMed ID: 7535531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Susceptibility of brain to AMPA induced excitotoxicity transiently peaks during early postnatal development.
    McDonald JW; Trescher WH; Johnston MV
    Brain Res; 1992 Jun; 583(1-2):54-70. PubMed ID: 1380402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypoxic-ischemic brain injury stimulates glial fibrillary acidic protein mRNA and protein expression in neonatal rats.
    Burtrum D; Silverstein FS
    Exp Neurol; 1994 Mar; 126(1):112-8. PubMed ID: 8157121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excitotoxic injury stimulates glial fibrillary acidic protein mRNA expression in perinatal rat brain.
    Burtrum D; Silverstein FS
    Exp Neurol; 1993 May; 121(1):127-32. PubMed ID: 8495707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-methyl-D-aspartate-mediated injury enhances quisqualic acid-stimulated phosphoinositide turnover in perinatal rats.
    Chen CK; Silverstein FS; Johnston MV
    J Neurochem; 1992 Sep; 59(3):963-71. PubMed ID: 1322976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of excitatory amino acid release by N-methyl-D-aspartate receptors in rat striatum: in vivo microdialysis studies.
    Bustos G; Abarca J; Forray MI; Gysling K; Bradberry CW; Roth RH
    Brain Res; 1992 Jul; 585(1-2):105-15. PubMed ID: 1355000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMDA and kainate induce internucleosomal DNA cleavage associated with both apoptotic and necrotic cell death in the neonatal rat brain.
    van Lookeren Campagne M; Lucassen PJ; Vermeulen JP; Balázs R
    Eur J Neurosci; 1995 Jul; 7(7):1627-40. PubMed ID: 7551189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative assessment of neuroprotection against NMDA-induced brain injury.
    McDonald JW; Roeser NF; Silverstein FS; Johnston MV
    Exp Neurol; 1989 Dec; 106(3):289-96. PubMed ID: 2687017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracerebral NMDA injection stimulates production of interleukin-1 beta in perinatal rat brain.
    Hagan P; Poole S; Bristow AF; Tilders F; Silverstein FS
    J Neurochem; 1996 Nov; 67(5):2215-8. PubMed ID: 8863535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perinatal hypoxia-ischemia disrupts striatal high-affinity [3H]glutamate uptake into synaptosomes.
    Silverstein FS; Buchanan K; Johnston MV
    J Neurochem; 1986 Nov; 47(5):1614-9. PubMed ID: 2876058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adenovirus-mediated over-expression of interleukin-1 receptor antagonist reduces susceptibility to excitotoxic brain injury in perinatal rats.
    Hagan P; Barks JD; Yabut M; Davidson BL; Roessler B; Silverstein FS
    Neuroscience; 1996 Dec; 75(4):1033-45. PubMed ID: 8938739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasticity of glutamatergic control of striatal acetylcholine release in experimental parkinsonism: opposite changes at group-II metabotropic and NMDA receptors.
    Marti M; Paganini F; Stocchi S; Mela F; Beani L; Bianchi C; Morari M
    J Neurochem; 2003 Feb; 84(4):792-802. PubMed ID: 12562523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of NMDA-induced increases in levels of endogenous adenosine by adenosine deaminase and adenosine transport inhibition in rat striatum.
    Delaney SM; Geiger JD
    Brain Res; 1995 Dec; 702(1-2):72-6. PubMed ID: 8846098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early appearance of functional deficits after neonatal excitotoxic and hypoxic-ischemic injury: fragile recovery after development and role of the NMDA receptor.
    Felt BT; Schallert T; Shao J; Liu Y; Li X; Barks JD
    Dev Neurosci; 2002; 24(5):418-25. PubMed ID: 12640181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CPP, a selective N-methyl-D-aspartate (NMDA)-type receptor antagonist: characterization in vitro and in vivo.
    Lehmann J; Schneider J; McPherson S; Murphy DE; Bernard P; Tsai C; Bennett DA; Pastor G; Steel DJ; Boehm C
    J Pharmacol Exp Ther; 1987 Mar; 240(3):737-46. PubMed ID: 2882014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct regulation of acetylcholine release by N-methyl-D-aspartic acid receptors in rat striatum.
    Ikarashi Y; Yuzurihara M; Takahashi A; Ishimaru H; Shiobara T; Maruyama Y
    Brain Res; 1998 Jun; 795(1-2):215-20. PubMed ID: 9622635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-methyl-D-aspartate releases gamma-aminobutyric acid from rat striatum in vivo: a microdialysis study using a novel preloading method.
    Young AM; Bradford HF
    J Neurochem; 1993 Feb; 60(2):487-92. PubMed ID: 8093478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elevation of Met-enkephalin-like immunoreactivity in the rat striatum and globus pallidus following the focal injection of excitotoxins.
    Ruzicka BB; Jhamandas K
    Brain Res; 1990 Dec; 536(1-2):227-39. PubMed ID: 2150770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Further evidence for multiple forms of an N-methyl-D-aspartate recognition domain in rat brain using membrane binding techniques.
    Zuo P; Ogita K; Suzuki T; Han D; Yoneda Y
    J Neurochem; 1993 Nov; 61(5):1865-73. PubMed ID: 7901335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.