BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 16716249)

  • 1. Electrostatic interactions of colicin E1 with the surface of Escherichia coli total lipid.
    Tian C; Tétreault E; Huang CK; Dahms TE
    Biochim Biophys Acta; 2006 Jun; 1758(6):693-701. PubMed ID: 16716249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mechanism for toxin insertion into membranes is suggested by the crystal structure of the channel-forming domain of colicin E1.
    Elkins P; Bunker A; Cramer WA; Stauffacher CV
    Structure; 1997 Mar; 5(3):443-58. PubMed ID: 9083117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid reassembly in asymmetric Langmuir-Blodgett/Langmuir-Schaeffer bilayers.
    Yuan J; Hao C; Chen M; Berini P; Zou S
    Langmuir; 2013 Jan; 29(1):221-7. PubMed ID: 23215148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Situ Electrochemical and PM-IRRAS Studies of Colicin E1 Ion Channels in the Floating Bilayer Lipid Membrane.
    Su Z; Ho D; Merrill AR; Lipkowski J
    Langmuir; 2019 Jun; 35(25):8452-8459. PubMed ID: 31194562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid dependence of the channel properties of a colicin E1-lipid toroidal pore.
    Sobko AA; Kotova EA; Antonenko YN; Zakharov SD; Cramer WA
    J Biol Chem; 2006 May; 281(20):14408-16. PubMed ID: 16556601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of lipids with different spontaneous curvature on the channel activity of colicin E1: evidence in favor of a toroidal pore.
    Sobko AA; Kotova EA; Antonenko YN; Zakharov SD; Cramer WA
    FEBS Lett; 2004 Oct; 576(1-2):205-10. PubMed ID: 15474038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane binding of the colicin E1 channel: activity requires an electrostatic interaction of intermediate magnitude.
    Zakharov SD; Heymann JB; Zhang YL; Cramer WA
    Biophys J; 1996 Jun; 70(6):2774-83. PubMed ID: 8744315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acidic interaction of the colicin A pore-forming domain with model membranes of Escherichia coli lipids results in a large perturbation of acyl chain order and stabilization of the bilayer.
    Géli V; Koorengevel MC; Demel RA; Lazdunski C; Killian JA
    Biochemistry; 1992 Nov; 31(45):11089-94. PubMed ID: 1445847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid-mediated inactivation of colicin E1 channels by calcium ions.
    Sobko AA; Kotova EA; Zakharov SD; Cramer WA; Antonenko YN
    Biochemistry (Mosc); 2006 Jan; 71(1):99-103. PubMed ID: 16457626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural stability and domain organization of colicin E1.
    Griko YV; Zakharov SD; Cramer WA
    J Mol Biol; 2000 Sep; 302(4):941-53. PubMed ID: 10993734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymyxin B-lipid interactions in Langmuir-Blodgett monolayers of Escherichia coli lipids: a thermodynamic and atomic force microscopy study.
    Clausell A; Busquets MA; Pujol M; Alsina A; Cajal Y
    Biopolymers; 2004 Dec; 75(6):480-90. PubMed ID: 15526335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Colicin E1 TolC-Binding Conformer: Pillar or Pore Function of TolC in Colicin Import?
    Zakharov SD; Wang XS; Cramer WA
    Biochemistry; 2016 Sep; 55(36):5084-94. PubMed ID: 27536862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystallization and characterization of colicin E1 channel-forming polypeptides.
    Elkins PA; Song HY; Cramer WA; Stauffacher CV
    Proteins; 1994 Jun; 19(2):150-7. PubMed ID: 8090709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the role of lipid in colicin pore formation.
    Zakharov SD; Kotova EA; Antonenko YN; Cramer WA
    Biochim Biophys Acta; 2004 Nov; 1666(1-2):239-49. PubMed ID: 15519318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface free energy and topography of mixed lipid layers on mica.
    Jurak M; Chibowski E
    Colloids Surf B Biointerfaces; 2010 Jan; 75(1):165-74. PubMed ID: 19748237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface thermodynamic properties of monolayers versus reconstitution of a membrane protein in solid-supported bilayers.
    Merino S; Domènech O; Díez-Pérez I; Sanz F; Montero MT; Hernández-Borrell J
    Colloids Surf B Biointerfaces; 2005 Aug; 44(2-3):93-8. PubMed ID: 16023838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions in lipid stabilised foam films.
    Toca-Herrera JL; Krasteva N; Müller HJ; Krastev R
    Adv Colloid Interface Sci; 2014 May; 207():93-106. PubMed ID: 24641908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid-destabilizing properties of the hydrophobic helices H8 and H9 from colicin E1.
    Lins L; El Kirat K; Charloteaux B; Flore C; Stroobant V; Thomas A; Dufrene Y; Brasseur R
    Mol Membr Biol; 2007; 24(5-6):419-30. PubMed ID: 17710646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic force microscopy studies of ganglioside GM1alpha in dioleoylphosphatidylcholine/dipalmitoylphosphatidylcholine mixed monolayers and hybrid bilayers.
    Takeda Y; Horito S
    Colloids Surf B Biointerfaces; 2005 Mar; 41(2-3):111-6. PubMed ID: 15737535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of Microorganisms with Lipid Langmuir Layers.
    Leader A; Molad O; Dombrovsky A; Reches M; Mandler D
    Langmuir; 2021 Aug; 37(34):10340-10347. PubMed ID: 34461726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.