BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 16716523)

  • 1. Habenula lesions alter synaptic plasticity within the fimbria-accumbens pathway in the rat.
    Lecourtier L; Deschaux O; Arnaud C; Chessel A; Kelly PH; Garcia R
    Neuroscience; 2006 Aug; 141(2):1025-1032. PubMed ID: 16716523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Responses of the nucleus accumbens following fornix/fimbria stimulation in the rat. Identification and long-term potentiation of mono- and polysynaptic pathways.
    Boeijinga PH; Mulder AB; Pennartz CM; Manshanden I; Lopes da Silva FH
    Neuroscience; 1993 Apr; 53(4):1049-58. PubMed ID: 8389427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ketamine induces dopamine-dependent depression of evoked hippocampal activity in the nucleus accumbens in freely moving rats.
    Hunt MJ; Kessal K; Garcia R
    J Neurosci; 2005 Jan; 25(2):524-31. PubMed ID: 15647498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short- and long-term plasticity of the hippocampus to nucleus accumbens and prefrontal cortex pathways in the rat, in vivo.
    Mulder AB; Arts MP; Lopes da Silva FH
    Eur J Neurosci; 1997 Aug; 9(8):1603-11. PubMed ID: 9283815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel mouse brain slice preparation of the hippocampo-accumbens pathway.
    Matthews RT; Coker O; Winder DG
    J Neurosci Methods; 2004 Aug; 137(1):49-60. PubMed ID: 15196826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of nitric oxide, cyclic GMP and phosphodiesterase 5 in excitatory amino acid and GABA release in the nucleus accumbens evoked by activation of the hippocampal fimbria.
    Kraus MM; Prast H
    Neuroscience; 2002; 112(2):331-43. PubMed ID: 12044451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the prefrontal cortex in altered hippocampal-accumbens synaptic plasticity in a developmental animal model of schizophrenia.
    Belujon P; Patton MH; Grace AA
    Cereb Cortex; 2014 Apr; 24(4):968-77. PubMed ID: 23236209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modifications in glutamatergic transmission after dopamine depletion of the nucleus accumbens. A combined in vivo/in vitro electrophysiological study in the rat.
    Mulder AB; Manshanden I; Vos PE; Wolterink G; van Ree JM; Lopes da Silva FH
    Neuroscience; 1996 Jun; 72(4):1009-21. PubMed ID: 8735226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fimbrial control of bidirectional synaptic plasticity of medial perforant path-dentate transmission.
    Nakao K; Ikegaya Y; Yamada MK; Nishiyama N; Matsuki N
    Synapse; 2003 Mar; 47(3):163-8. PubMed ID: 12494398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Habenula lesions cause impaired cognitive performance in rats: implications for schizophrenia.
    Lecourtier L; Neijt HC; Kelly PH
    Eur J Neurosci; 2004 May; 19(9):2551-60. PubMed ID: 15128408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The nitric oxide system modulates the in vivo release of acetylcholine in the nucleus accumbens induced by stimulation of the hippocampal fornix/fimbria-projection.
    Kraus MM; Prast H
    Eur J Neurosci; 2001 Oct; 14(7):1105-12. PubMed ID: 11683902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opiate withdrawal modifies synaptic plasticity in subicular-nucleus accumbens pathway in vivo.
    Dong Z; Cao J; Xu L
    Neuroscience; 2007 Feb; 144(3):845-54. PubMed ID: 17141960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A conditioned stressful environment causes short-term metaplastic-like changes in the rat nucleus accumbens.
    Hugues S; Kessal K; Hunt MJ; Garcia R
    J Neurophysiol; 2003 Nov; 90(5):3224-31. PubMed ID: 14615430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dopamine-dependent interactions between limbic and prefrontal cortical plasticity in the nucleus accumbens: disruption by cocaine sensitization.
    Goto Y; Grace AA
    Neuron; 2005 Jul; 47(2):255-66. PubMed ID: 16039567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fimbria-fornix lesions compromise the induction of long-term potentiation at the Schaffer collateral-CA1 synapse in the rat in vivo.
    Li C; Maier DL; Cross B; Doherty JJ; Christian EP
    J Neurophysiol; 2005 May; 93(5):3001-6. PubMed ID: 15846002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophysiological evidence for reciprocal connectivity between the nucleus accumbens septi and ventral pallidal region.
    Hakan RL; Berg GI; Henriksen SJ
    Brain Res; 1992 May; 581(2):344-50. PubMed ID: 1393539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amygdala electrical stimulation inducing spatial memory recovery produces an increase of hippocampal bdnf and arc gene expression.
    Mercerón-Martínez D; Almaguer-Melian W; Alberti-Amador E; Estupiñán B; Fernández I; Bergado JA
    Brain Res Bull; 2016 Jun; 124():254-61. PubMed ID: 27262671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential contribution of mesoaccumbens and mesohabenular dopamine to intracranial self-stimulation.
    Duchesne V; Boye SM
    Neuropharmacology; 2013 Jul; 70():43-50. PubMed ID: 23337257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ketamine and amphetamine both enhance synaptic transmission in the amygdala-nucleus accumbens pathway but with different time-courses.
    Kessal K; Chessel A; Spennato G; Garcia R
    Synapse; 2005 Jul; 57(1):61-5. PubMed ID: 15858833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophysiology of the hippocampal and amygdaloid projections to the nucleus accumbens of the rat: convergence, segregation, and interaction of inputs.
    Mulder AB; Hodenpijl MG; Lopes da Silva FH
    J Neurosci; 1998 Jul; 18(13):5095-102. PubMed ID: 9634575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.