BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 16716751)

  • 61. Operons in Escherichia coli: genomic analyses and predictions.
    Salgado H; Moreno-Hagelsieb G; Smith TF; Collado-Vides J
    Proc Natl Acad Sci U S A; 2000 Jun; 97(12):6652-7. PubMed ID: 10823905
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Radius margin bounds for support vector machines with the RBF kernel.
    Chung KM; Kao WC; Sun CL; Wang LL; Lin CJ
    Neural Comput; 2003 Nov; 15(11):2643-81. PubMed ID: 14577857
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Persistence drives gene clustering in bacterial genomes.
    Fang G; Rocha EP; Danchin A
    BMC Genomics; 2008 Jan; 9():4. PubMed ID: 18179692
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Beyond the bounds of orthology: functional inference from metagenomic context.
    Vey G; Moreno-Hagelsieb G
    Mol Biosyst; 2010 Jul; 6(7):1247-54. PubMed ID: 20419183
    [TBL] [Abstract][Full Text] [Related]  

  • 65. DOOR: a database for prokaryotic operons.
    Mao F; Dam P; Chou J; Olman V; Xu Y
    Nucleic Acids Res; 2009 Jan; 37(Database issue):D459-63. PubMed ID: 18988623
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A novel method for prokaryotic promoter prediction based on DNA stability.
    Kanhere A; Bansal M
    BMC Bioinformatics; 2005 Jan; 6():1. PubMed ID: 15631638
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Prediction of antibiotic resistance proteins from sequence-derived properties irrespective of sequence similarity.
    Zhang HL; Lin HH; Tao L; Ma XH; Dai JL; Jia J; Cao ZW
    Int J Antimicrob Agents; 2008 Sep; 32(3):221-6. PubMed ID: 18583101
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A universally applicable method of operon map prediction on minimally annotated genomes using conserved genomic context.
    Edwards MT; Rison SC; Stoker NG; Wernisch L
    Nucleic Acids Res; 2005; 33(10):3253-62. PubMed ID: 15942028
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Scores of generalized base properties for quantitative sequence-activity modelings for E. coli promoters based on support vector machine.
    Liang G; Li Z
    J Mol Graph Model; 2007 Jul; 26(1):269-81. PubMed ID: 17291800
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A machine learning based method for the prediction of secretory proteins using amino acid composition, their order and similarity-search.
    Garg A; Raghava GP
    In Silico Biol; 2008; 8(2):129-40. PubMed ID: 18928201
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Predicted transcription factor binding sites as predictors of operons in Escherichia coli and Streptomyces coelicolor.
    Laing E; Sidhu K; Hubbard SJ
    BMC Genomics; 2008 Feb; 9():79. PubMed ID: 18269733
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Detecting uber-operons in prokaryotic genomes.
    Che D; Li G; Mao F; Wu H; Xu Y
    Nucleic Acids Res; 2006; 34(8):2418-27. PubMed ID: 16682449
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Operon prediction by comparative genomics: an application to the Synechococcus sp. WH8102 genome.
    Chen X; Su Z; Dam P; Palenik B; Xu Y; Jiang T
    Nucleic Acids Res; 2004; 32(7):2147-57. PubMed ID: 15096577
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A new method of solution for the occupancy problem and its application to operon size prediction.
    Lamboy WF; Moreno-Hagelsieb G
    J Theor Biol; 2004 Apr; 227(3):315-22. PubMed ID: 15019498
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Genome-wide similarity search for transcription factors and their binding sites in a metal-reducing prokaryote Geobacter sulfurreducens.
    Yan B; Lovley DR; Krushkal J
    Biosystems; 2007; 90(2):421-41. PubMed ID: 17184904
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Genomic organization of evolutionarily correlated genes in bacteria: limits and strategies.
    Junier I; Hérisson J; Képès F
    J Mol Biol; 2012 Jun; 419(5):369-86. PubMed ID: 22446685
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Production of the non-ribosomal peptide plipastatin in Bacillus subtilis regulated by three relevant gene blocks assembled in a single movable DNA segment.
    Tsuge K; Matsui K; Itaya M
    J Biotechnol; 2007 May; 129(4):592-603. PubMed ID: 17376553
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Improving protein protein interaction prediction based on phylogenetic information using a least-squares support vector machine.
    Craig RA; Liao L
    Ann N Y Acad Sci; 2007 Dec; 1115():154-67. PubMed ID: 17925357
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Predicting protein linkages in bacteria: which method is best depends on task.
    Karimpour-Fard A; Leach SM; Gill RT; Hunter LE
    BMC Bioinformatics; 2008 Sep; 9():397. PubMed ID: 18816389
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Prediction of conditional gene essentiality through graph theoretical analysis of genome-wide functional linkages.
    Manimaran P; Hegde SR; Mande SC
    Mol Biosyst; 2009 Dec; 5(12):1936-42. PubMed ID: 19763329
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.