BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

550 related articles for article (PubMed ID: 16717135)

  • 41. Effects of protein tyrosine phosphatase inhibitors on EGF- and insulin-dependent mammary epithelial cell growth.
    McIntyre BS; Briski KP; Hosick HL; Sylvester PW
    Proc Soc Exp Biol Med; 1998 Feb; 217(2):180-7. PubMed ID: 9452142
    [TBL] [Abstract][Full Text] [Related]  

  • 42. EGF augments TGFβ-induced epithelial-mesenchymal transition by promoting SHP2 binding to GAB1.
    Buonato JM; Lan IS; Lazzara MJ
    J Cell Sci; 2015 Nov; 128(21):3898-909. PubMed ID: 26359300
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The MAP-kinase ERK2 is a specific substrate of the protein tyrosine phosphatase HePTP.
    Pettiford SM; Herbst R
    Oncogene; 2000 Feb; 19(7):858-69. PubMed ID: 10702794
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A specific amino acid context in EGFR and HER2 phosphorylation sites enables selective binding to the active site of Src homology phosphatase 2 (SHP2).
    Hartman Z; Geldenhuys WJ; Agazie YM
    J Biol Chem; 2020 Mar; 295(11):3563-3575. PubMed ID: 32024694
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia.
    Bentires-Alj M; Paez JG; David FS; Keilhack H; Halmos B; Naoki K; Maris JM; Richardson A; Bardelli A; Sugarbaker DJ; Richards WG; Du J; Girard L; Minna JD; Loh ML; Fisher DE; Velculescu VE; Vogelstein B; Meyerson M; Sellers WR; Neel BG
    Cancer Res; 2004 Dec; 64(24):8816-20. PubMed ID: 15604238
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The docking protein Gab1 is the primary mediator of EGF-stimulated activation of the PI-3K/Akt cell survival pathway.
    Mattoon DR; Lamothe B; Lax I; Schlessinger J
    BMC Biol; 2004 Nov; 2():24. PubMed ID: 15550174
    [TBL] [Abstract][Full Text] [Related]  

  • 47. HSP70 binds to SHP2 and has effects on the SHP2-related EGFR/GAB1 signaling pathway.
    Yoo JC; Hayman MJ
    Biochem Biophys Res Commun; 2006 Dec; 351(4):979-85. PubMed ID: 17097051
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Targeting a cryptic allosteric site for selective inhibition of the oncogenic protein tyrosine phosphatase Shp2.
    Chio CM; Lim CS; Bishop AC
    Biochemistry; 2015 Jan; 54(2):497-504. PubMed ID: 25519989
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Generation of inhibitor-sensitive protein tyrosine phosphatases via active-site mutations.
    Bishop AC; Zhang XY; Lone AM
    Methods; 2007 Jul; 42(3):278-88. PubMed ID: 17532515
    [TBL] [Abstract][Full Text] [Related]  

  • 50. PTPN11 (Shp2) mutations in LEOPARD syndrome have dominant negative, not activating, effects.
    Kontaridis MI; Swanson KD; David FS; Barford D; Neel BG
    J Biol Chem; 2006 Mar; 281(10):6785-92. PubMed ID: 16377799
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A multifunctional cross-validation high-throughput screening protocol enabling the discovery of new SHP2 inhibitors.
    Song Y; Zhao M; Wu Y; Yu B; Liu HM
    Acta Pharm Sin B; 2021 Mar; 11(3):750-762. PubMed ID: 33777680
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structure-based design, synthesis and biological evaluation of aminopyrazines as highly potent, selective, and cellularly active allosteric SHP2 inhibitors.
    Tang K; Zhao M; Wu YH; Wu Q; Wang S; Dong Y; Yu B; Song Y; Liu HM
    Eur J Med Chem; 2022 Feb; 230():114106. PubMed ID: 35063735
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthesis of small peptide compounds, molecular docking, and inhibitory activity evaluation against phosphatases PTP1B and SHP2.
    Kostrzewa T; Sahu KK; Gorska-Ponikowska M; Tuszynski JA; Kuban-Jankowska A
    Drug Des Devel Ther; 2018; 12():4139-4147. PubMed ID: 30584278
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inhibition of Shp2 suppresses mutant EGFR-induced lung tumors in transgenic mouse model of lung adenocarcinoma.
    Schneeberger VE; Ren Y; Luetteke N; Huang Q; Chen L; Lawrence HR; Lawrence NJ; Haura EB; Koomen JM; Coppola D; Wu J
    Oncotarget; 2015 Mar; 6(8):6191-202. PubMed ID: 25730908
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inhibition of SHP2 as an approach to block RAS-driven cancers.
    Chou YT; Bivona TG
    Adv Cancer Res; 2022; 153():205-236. PubMed ID: 35101231
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Specific inhibitors of the protein tyrosine phosphatase Shp2 identified by high-throughput docking.
    Hellmuth K; Grosskopf S; Lum CT; Würtele M; Röder N; von Kries JP; Rosario M; Rademann J; Birchmeier W
    Proc Natl Acad Sci U S A; 2008 May; 105(20):7275-80. PubMed ID: 18480264
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structure-based kinetic models of modular signaling protein function: focus on Shp2.
    Barua D; Faeder JR; Haugh JM
    Biophys J; 2007 Apr; 92(7):2290-300. PubMed ID: 17208977
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Functional interrogation and therapeutic targeting of protein tyrosine phosphatases.
    Krabill AD; Zhang ZY
    Biochem Soc Trans; 2021 Aug; 49(4):1723-1734. PubMed ID: 34431504
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Deletion of Ptpn11 (Shp2) in cardiomyocytes causes dilated cardiomyopathy via effects on the extracellular signal-regulated kinase/mitogen-activated protein kinase and RhoA signaling pathways.
    Kontaridis MI; Yang W; Bence KK; Cullen D; Wang B; Bodyak N; Ke Q; Hinek A; Kang PM; Liao R; Neel BG
    Circulation; 2008 Mar; 117(11):1423-35. PubMed ID: 18316486
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Polyphyllin D Shows Anticancer Effect through a Selective Inhibition of Src Homology Region 2-Containing Protein Tyrosine Phosphatase-2 (SHP2).
    Kwon SJ; Ahn D; Yang HM; Kang HJ; Chung SJ
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33562835
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.