These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 16717450)
1. Chromosomal mechanisms underlying the karyotype evolution of the oriental voles (Muridae, Eothenomys). Li T; Wang J; Su W; Yang F Cytogenet Genome Res; 2006; 114(1):50-5. PubMed ID: 16717450 [TBL] [Abstract][Full Text] [Related]
3. Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia). I. The genome homology of tundra vole, field vole, mouse and golden hamster revealed by comparative chromosome painting. Sitnikova NA; Romanenko SA; O'Brien PC; Perelman PL; Fu B; Rubtsova NV; Serdukova NA; Golenishchev FN; Trifonov VA; Ferguson-Smith MA; Yang F; Graphodatsky AS Chromosome Res; 2007; 15(4):447-56. PubMed ID: 17497247 [TBL] [Abstract][Full Text] [Related]
4. Karyotype relationships of six bat species (Chiroptera, Vespertilionidae) from China revealed by chromosome painting and G-banding comparison. Ao L; Gu X; Feng Q; Wang J; O'Brien PC; Fu B; Mao X; Su W; Wang Y; Volleth M; Yang F; Nie W Cytogenet Genome Res; 2006; 115(2):145-53. PubMed ID: 17065796 [TBL] [Abstract][Full Text] [Related]
5. Molecular phylogeny and biogeography of Oriental voles: genus Eothenomys (Muridae, Mammalia). Luo J; Yang D; Suzuki H; Wang Y; Chen WJ; Campbell KL; Zhang YP Mol Phylogenet Evol; 2004 Nov; 33(2):349-62. PubMed ID: 15336670 [TBL] [Abstract][Full Text] [Related]
6. Rapid Karyotype Evolution in Lasiopodomys Involved at Least Two Autosome - Sex Chromosome Translocations. Gladkikh OL; Romanenko SA; Lemskaya NA; Serdyukova NA; O'Brien PC; Kovalskaya JM; Smorkatcheva AV; Golenishchev FN; Perelman PL; Trifonov VA; Ferguson-Smith MA; Yang F; Graphodatsky AS PLoS One; 2016; 11(12):e0167653. PubMed ID: 27936177 [TBL] [Abstract][Full Text] [Related]
7. Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia). III. Karyotype relationships of ten Microtus species. Lemskaya NA; Romanenko SA; Golenishchev FN; Rubtsova NV; Sablina OV; Serdukova NA; O'Brien PC; Fu B; Yiğit N; Ferguson-Smith MA; Yang F; Graphodatsky AS Chromosome Res; 2010 Jun; 18(4):459-71. PubMed ID: 20379801 [TBL] [Abstract][Full Text] [Related]
8. Karyotype evolution of giraffes (Giraffa camelopardalis) revealed by cross-species chromosome painting with Chinese muntjac (Muntiacus reevesi) and human (Homo sapiens) paints. Huang L; Nesterenko A; Nie W; Wang J; Su W; Graphodatsky AS; Yang F Cytogenet Genome Res; 2008; 122(2):132-8. PubMed ID: 19096208 [TBL] [Abstract][Full Text] [Related]
9. Phylogeny of Oriental voles (Rodentia: Muridae: Arvicolinae): molecular and morphological evidence. Liu S; Liu Y; Guo P; Sun Z; Murphy RW; Fan Z; Fu J; Zhang Y Zoolog Sci; 2012 Sep; 29(9):610-22. PubMed ID: 22943786 [TBL] [Abstract][Full Text] [Related]
10. Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia). II. The genome homology of two mole voles (genus Ellobius), the field vole and golden hamster revealed by comparative chromosome painting. Romanenko SA; Sitnikova NA; Serdukova NA; Perelman PL; Rubtsova NV; Bakloushinskaya IY; Lyapunova EA; Just W; Ferguson-Smith MA; Yang F; Graphodatsky AS Chromosome Res; 2007; 15(7):891-7. PubMed ID: 17924201 [TBL] [Abstract][Full Text] [Related]
12. Phylogenomics of several deer species revealed by comparative chromosome painting with Chinese muntjac paints. Huang L; Chi J; Nie W; Wang J; Yang F Genetica; 2006 May; 127(1-3):25-33. PubMed ID: 16850210 [TBL] [Abstract][Full Text] [Related]
13. Further insights into the ancestral murine karyotype: the contribution of the Otomys-Mus comparison using chromosome painting. Engelbrecht A; Dobigny G; Robinson TJ Cytogenet Genome Res; 2006; 112(1-2):126-30. PubMed ID: 16276101 [TBL] [Abstract][Full Text] [Related]
14. Comparative chromosome painting of four Siberian Vespertilionidae species with Aselliscus stoliczkanus and human probes. Kulemzina AI; Nie W; Trifonov VA; Staroselec Y; Vasenkov DA; Volleth M; Yang F; Graphodatsky AS Cytogenet Genome Res; 2011; 134(3):200-5. PubMed ID: 21709413 [TBL] [Abstract][Full Text] [Related]
16. Mapping genomic rearrangements in titi monkeys by chromosome flow sorting and multidirectional in-situ hybridization. Dumas F; Bigoni F; Stone G; Sineo L; Stanyon R Chromosome Res; 2005; 13(1):85-96. PubMed ID: 15791414 [TBL] [Abstract][Full Text] [Related]
17. New insights into the karyotypic relationships of Chinese muntjac (Muntiacus reevesi), forest musk deer (Moschus berezovskii) and gayal (Bos frontalis). Chi J; Fu B; Nie W; Wang J; Graphodatsky AS; Yang F Cytogenet Genome Res; 2005; 108(4):310-6. PubMed ID: 15627750 [TBL] [Abstract][Full Text] [Related]
18. Chromosome painting between human and lorisiform prosimians: evidence for the HSA 7/16 synteny in the primate ancestral karyotype. Nie W; O'Brien PC; Fu B; Wang J; Su W; Ferguson-Smith MA; Robinson TJ; Yang F Am J Phys Anthropol; 2006 Feb; 129(2):250-9. PubMed ID: 16323198 [TBL] [Abstract][Full Text] [Related]
19. Sperm DNA and sex chromosome differences between two geographical populations of the creeping vole, Microtus oregoni. Johnson LA; Clarke RN Mol Reprod Dev; 1990 Oct; 27(2):159-62. PubMed ID: 2248779 [TBL] [Abstract][Full Text] [Related]
20. Complete mitochondrial genome of the Chinese oriental vole Eothenomys chinensis (Rodentia: Arvicolinae). Yang C; Hao H; Liu S; Liu Y; Yue B; Zhang X Mitochondrial DNA; 2012 Apr; 23(2):131-3. PubMed ID: 22397384 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]