BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 1671759)

  • 21. Molecular cytogenetic characterization of early and late renal cell carcinomas in von Hippel-Lindau disease.
    Phillips JL; Ghadimi BM; Wangsa D; Padilla-Nash H; Worrell R; Hewitt S; Walther M; Linehan WM; Klausner RD; Ried T
    Genes Chromosomes Cancer; 2001 May; 31(1):1-9. PubMed ID: 11284029
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cytogenetic alterations in renal tumors: a study of 38 Southeast Asian patients.
    Lau LC; Tan PH; Chong TW; Foo KT; Yip S
    Cancer Genet Cytogenet; 2007 May; 175(1):1-7. PubMed ID: 17498551
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cytogenetic analysis in renal cell carcinoma: correlation with tumor aggressiveness.
    Weaver DJ; Michalski K; Miles J
    Cancer Res; 1988 May; 48(10):2887-9. PubMed ID: 3359445
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chromosome 3p deletion in a renal cell carcinoma cell line established from a patient with von Hippel-Lindau disease.
    Kohno T; Sekine T; Tobisu K; Oshimura M; Yokota J
    Jpn J Clin Oncol; 1993 Aug; 23(4):226-31. PubMed ID: 8105119
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dissecting karyotypic patterns in renal cell carcinoma: an analysis of the accumulated cytogenetic data.
    Höglund M; Gisselsson D; Soller M; Hansen GB; Elfving P; Mitelman F
    Cancer Genet Cytogenet; 2004 Aug; 153(1):1-9. PubMed ID: 15325087
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Genetics of renal tumors].
    Oláh E; Jakab Z; Balogh E
    Orv Hetil; 2001 Jul; 142(26):1367-73. PubMed ID: 11478032
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Frequent breakpoints in the region surrounding FRA3B in sporadic renal cell carcinomas.
    Shridhar V; Wang L; Rosati R; Paradee W; Shridhar R; Mullins C; Sakr W; Grignon D; Miller OJ; Sun QC; Petros J; Smith DI
    Oncogene; 1997 Mar; 14(11):1269-77. PubMed ID: 9178887
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Clinicopathologic and interphase cytogenetic analysis of papillary (chromophilic) renal cell carcinoma.
    Kattar MM; Grignon DJ; Wallis T; Haas GP; Sakr WA; Pontes JE; Visscher DW
    Mod Pathol; 1997 Nov; 10(11):1143-50. PubMed ID: 9388066
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chromosome 17p deletions and p53 mutations in renal cell carcinoma.
    Reiter RE; Anglard P; Liu S; Gnarra JR; Linehan WM
    Cancer Res; 1993 Jul; 53(13):3092-7. PubMed ID: 8319216
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Papillary renal cell carcinoma. A morphologic and cytogenetic study of 11 cases.
    Kovacs G
    Am J Pathol; 1989 Jan; 134(1):27-34. PubMed ID: 2913826
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessing genetic heterogeneity of renal cell tumors.
    Mirghomizadeh F; Kupka S; Blin N
    Anticancer Res; 1999; 19(2C):1467-70. PubMed ID: 10365125
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of 3p allelic loss in papillary and nonpapillary renal cell carcinomas. Correlation with tumor karyotypes.
    Hughson MD; Meloni A; Dougherty S; Silva FG; Sandberg AA
    Cancer Genet Cytogenet; 1996 Apr; 87(2):133-9. PubMed ID: 8625259
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mitochondrial and chromosomal DNA alterations in human chromophobe renal cell carcinomas.
    Kovacs A; Storkel S; Thoenes W; Kovacs G
    J Pathol; 1992 Jul; 167(3):273-7. PubMed ID: 1381433
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prognostic impacts of cytogenetic findings in clear cell renal cell carcinoma: gain of 5q31-qter predicts a distinct clinical phenotype with favorable prognosis.
    Gunawan B; Huber W; Holtrup M; von Heydebreck A; Efferth T; Poustka A; Ringert RH; Jakse G; Füzesi L
    Cancer Res; 2001 Nov; 61(21):7731-8. PubMed ID: 11691785
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Loss of chromosomes in clear cell renal cell carcinoma and in corresponding renal parenchyma.
    Feil G; Leipoldt M; Nelde HJ; Wunderer A; Wechsel HW; Kaiser P; Bichler KH
    Anticancer Res; 1999; 19(2C):1477-82. PubMed ID: 10365127
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Accumulation of genetic alterations and progression of primary breast cancer.
    Sato T; Akiyama F; Sakamoto G; Kasumi F; Nakamura Y
    Cancer Res; 1991 Nov; 51(21):5794-9. PubMed ID: 1682035
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Numerical chromosomal aberrations in papillary renal cortical tumors: relationship with histopathologic features.
    Henke RP; Erbersdobler A
    Virchows Arch; 2002 Jun; 440(6):604-9. PubMed ID: 12070600
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Major role for a 3p21 region and lack of involvement of the t(3;8) breakpoint region in the development of renal cell carcinoma suggested by loss of heterozygosity analysis.
    van den Berg A; Hulsbeek MF; de Jong D; Kok K; Veldhuis PM; Roche J; Buys CH
    Genes Chromosomes Cancer; 1996 Jan; 15(1):64-72. PubMed ID: 8824727
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of DNA gains and losses in primary renal clear cell carcinomas and metastatic sites: importance of 1q and 3p copy number changes in metastatic events.
    Gronwald J; Störkel S; Holtgreve-Grez H; Hadaczek P; Brinkschmidt C; Jauch A; Lubinski J; Cremer T
    Cancer Res; 1997 Feb; 57(3):481-7. PubMed ID: 9012478
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Precancerous lesions in the kidney.
    Van Poppel H; Nilsson S; Algaba F; Bergerheim U; Dal Cin P; Fleming S; Hellsten S; Kirkali Z; Klotz L; Lindblad P; Ljungberg B; Mulders P; Roskams T; Ross RK; Walker C; Wersäll P
    Scand J Urol Nephrol Suppl; 2000; (205):136-65. PubMed ID: 11144893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.