These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

466 related articles for article (PubMed ID: 16718724)

  • 41. Unraveling the origin of the peculiar reaction field of triruthenium ring core structures.
    Tsipis AC; Kefalidis CE; Tsipis CA
    J Am Chem Soc; 2007 Nov; 129(45):13905-22. PubMed ID: 17956091
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Efficiency of the NICSzz-scan curves to probe the antiaromaticity of organic and inorganic rings/cages.
    Tsipis AC
    Phys Chem Chem Phys; 2009 Oct; 11(37):8244-61. PubMed ID: 19756281
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Correlation of delocalization indices and current-density maps in polycyclic aromatic hydrocarbons.
    Fias S; Fowler PW; Delgado JL; Hahn U; Bultinck P
    Chemistry; 2008; 14(10):3093-9. PubMed ID: 18232045
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Theoretical study on conformation and electronic state of Hückel-aromatic multiply N-confused [26]hexaphyrins.
    Toganoh M; Furuta H
    J Org Chem; 2010 Dec; 75(23):8213-23. PubMed ID: 21058649
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An energetic measure of aromaticity and antiaromaticity based on the Pauling-Wheland resonance energies.
    Mo Y; von Ragué Schleyer P
    Chemistry; 2006 Feb; 12(7):2009-20. PubMed ID: 16342222
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Can substituted cyclopentadiene become aromatic or antiaromatic?
    Stanger A
    Chemistry; 2006 Mar; 12(10):2745-51. PubMed ID: 16416499
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Database of Nuclear Independent Chemical Shifts (NICS) versus NICS
    Alvarez-Ramírez F; Ruiz-Morales Y
    J Chem Inf Model; 2020 Feb; 60(2):611-620. PubMed ID: 31714770
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electrospray mass spectrometric and DFT study of substituent effects in Ag(+) complexation to polycyclic aromatic hydrocarbons (PAHs).
    Laali KK; Hupertz S; Temu AG; Galembeck SE
    Org Biomol Chem; 2005 Jun; 3(12):2319-26. PubMed ID: 16010367
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Antiaromaticity in fluorenylidene dications. Experimental and theoretical evidence for the relationship between the HOMO/LUMO gap and antiaromaticity.
    Mills NS; Levy A; Plummer BF
    J Org Chem; 2004 Oct; 69(20):6623-33. PubMed ID: 15387584
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The aromaticity/antiaromaticity continuum. 1. Comparison of the aromaticity of the dianion and the antiaromaticity of the dication of tetrabenzo[5.5]fulvalene via magnetic measures.
    Mills NS; Benish M
    J Org Chem; 2006 Mar; 71(6):2207-13. PubMed ID: 16526764
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Properties of aromaticity indices based on the one-electron density matrix.
    Cioslowski J; Matito E; Solà M
    J Phys Chem A; 2007 Jul; 111(28):6521-5. PubMed ID: 17583327
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Growth format, electronic architecture, magnetic, and optical properties of aromatic cyclo-Cu3Au3 homotops.
    Tsipis CA; Depastas IG; Kefalidis CE
    J Comput Chem; 2007 Aug; 28(11):1893-908. PubMed ID: 17405112
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Aromaticity of four-membered-ring 6pi-electron systems: N2S2 and Li2C4H4.
    Jung Y; Heine T; Schleyer PV; Head-Gordon M
    J Am Chem Soc; 2004 Mar; 126(10):3132-8. PubMed ID: 15012143
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Aromaticity of ring carbo-mers of [N]annulenes and [N]cycloalkanes.
    Soncini A; Fowler PW; Lepetit C; Chauvin R
    Phys Chem Chem Phys; 2008 Feb; 10(7):957-64. PubMed ID: 18259634
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Double aromaticity in monocyclic carbon, boron, and borocarbon rings based on magnetic criteria.
    Wodrich MD; Corminboeuf C; Park SS; Schleyer Pv
    Chemistry; 2007; 13(16):4582-93. PubMed ID: 17431868
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Second hyperpolarizabilities of singlet polycyclic diphenalenyl radicals: effects of the nature of the central heterocyclic ring and substitution to diphenalenyl rings.
    Nakano M; Nakagawa N; Kishi R; Ohta S; Nate M; Takahashi H; Kubo T; Kamada K; Ohta K; Champagne B; Botek E; Morita Y; Nakasuji K; Yamaguchi K
    J Phys Chem A; 2007 Sep; 111(37):9102-10. PubMed ID: 17722892
    [TBL] [Abstract][Full Text] [Related]  

  • 57. On the Aromaticity of the Planar Hydrogen-Bonded (HF)3 Trimer.
    Lin YC; Sundholm D; Jusélius J
    J Chem Theory Comput; 2006 May; 2(3):761-4. PubMed ID: 26626680
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ground- and excited-state aromaticity and antiaromaticity in benzene and cyclobutadiene.
    Karadakov PB
    J Phys Chem A; 2008 Aug; 112(31):7303-9. PubMed ID: 18636691
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Shannon entropy as a new measure of aromaticity, Shannon aromaticity.
    Noorizadeh S; Shakerzadeh E
    Phys Chem Chem Phys; 2010 May; 12(18):4742-9. PubMed ID: 20428554
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparative study of aromaticity in tetraoxa[8]circulenes.
    Radenković S; Gutman I; Bultinck P
    J Phys Chem A; 2012 Sep; 116(37):9421-30. PubMed ID: 22937838
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.