These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
479 related articles for article (PubMed ID: 16718738)
1. Pesticide exposure assessment in rice paddies in Europe: a comparative study of existing mathematical models. Karpouzas DG; Cervelli S; Watanabe H; Capri E; Ferrero A Pest Manag Sci; 2006 Jul; 62(7):624-36. PubMed ID: 16718738 [TBL] [Abstract][Full Text] [Related]
2. Application of the RICEWQ-VADOFT model for simulating the environmental fate of pretilachlor in rice paddies. Karpouzas DG; Ferrero A; Vidotto F; Capri E Environ Toxicol Chem; 2005 Apr; 24(4):1007-17. PubMed ID: 15839578 [TBL] [Abstract][Full Text] [Related]
3. Simulation of mefenacet concentrations in paddy fields by an improved PCPF-1 model. Watanabe H; Takagi K; Vu SH Pest Manag Sci; 2006 Jan; 62(1):20-9. PubMed ID: 16261540 [TBL] [Abstract][Full Text] [Related]
4. Pesticides in the Rhône river delta (France): basic data for a field-based exposure assessment. Comoretto L; Arfib B; Chiron S Sci Total Environ; 2007 Jul; 380(1-3):124-32. PubMed ID: 17324449 [TBL] [Abstract][Full Text] [Related]
5. Uncalibrated modelling of conservative tracer and pesticide leaching to groundwater: comparison of potential Tier II exposure assessment models. Fox GA; Sabbagh GJ; Chen W; Russell MH Pest Manag Sci; 2006 Jun; 62(6):537-50. PubMed ID: 16625679 [TBL] [Abstract][Full Text] [Related]
6. Simulating pesticide leaching and runoff in rice paddies with the RICEWQ-VADOFT model. Miao Z; Cheplick MJ; Williams MW; Trevisan M; Padovani L; Gennari M; Ferrero A; Vidotto F; Capri E J Environ Qual; 2003; 32(6):2189-99. PubMed ID: 14674541 [TBL] [Abstract][Full Text] [Related]
7. Parameterisation, evaluation and comparison of pesticide leaching models to data from a Bologna field site, Italy. Garratt JA; Capri E; Trevisan M; Errera G; Wilkins RM Pest Manag Sci; 2003 Jan; 59(1):3-20. PubMed ID: 12558095 [TBL] [Abstract][Full Text] [Related]
8. Calibration and validation of a dynamic water model in agricultural scenarios. Infantino A; Pereira T; Ferrari C; Cerejeira MJ; Di Guardo A Chemosphere; 2008 Jan; 70(7):1298-308. PubMed ID: 17765289 [TBL] [Abstract][Full Text] [Related]
9. PCPF-M model for simulating the fate and transport of pesticides and their metabolites in rice paddy field. Boulange J; Malhat F; Thuyet DQ; Watanabe H Pest Manag Sci; 2017 Dec; 73(12):2429-2438. PubMed ID: 28580617 [TBL] [Abstract][Full Text] [Related]
10. Simulating the dissipation of two herbicides using micro paddy lysimeters. Nhung DT; Phong TK; Watanabe H; Iwafune T; Thuyet DQ Chemosphere; 2009 Nov; 77(10):1393-9. PubMed ID: 19811801 [TBL] [Abstract][Full Text] [Related]
11. A study on pesticide runoff from paddy fields to a river in rural region--2: development and application of a mathematical model. Nakano Y; Yoshida T; Inoue T Water Res; 2004 Jul; 38(13):3023-30. PubMed ID: 15261540 [TBL] [Abstract][Full Text] [Related]
12. Predicting rice pesticide fate and transport following foliage application by an updated PCPF-1 model. Tu LH; Boulange J; Phong TK; Thuyet DQ; Watanabe H; Takagi K J Environ Manage; 2021 Jan; 277():111356. PubMed ID: 32950777 [TBL] [Abstract][Full Text] [Related]
13. Modelling pesticide concentrations in Japanese paddy fields using the RICEWQ model. Colombo M; Boulange J; Williams WM; Watanabe H Sci Total Environ; 2024 Dec; 954():176678. PubMed ID: 39362561 [TBL] [Abstract][Full Text] [Related]
14. Exposure risk assessment and evaluation of the best management practice for controlling pesticide runoff from paddy fields. Part 1: Paddy watershed monitoring. Vu SH; Ishihara S; Watanabe H Pest Manag Sci; 2006 Dec; 62(12):1193-206. PubMed ID: 17099930 [TBL] [Abstract][Full Text] [Related]
15. Exposure risk assessment and evaluation of the best management practice for controlling pesticide runoff from paddy fields. Part 2: model simulation for the herbicide pretilachlor. Phong TK; Vu SH; Ishihara S; Hiramatsu K; Watanabe H Pest Manag Sci; 2011 Jan; 67(1):70-6. PubMed ID: 20954170 [TBL] [Abstract][Full Text] [Related]
16. Modeling complexity in simulating pesticide fate in a rice paddy. Luo Y; Spurlock F; Gill S; Goh KS Water Res; 2012 Dec; 46(19):6300-8. PubMed ID: 23021519 [TBL] [Abstract][Full Text] [Related]
17. Runoff characteristics of particulate pesticides in a river from paddy fields. Inoue T; Ebise S; Numabe A; Nagafuchi O; Matsui Y Water Sci Technol; 2002; 45(9):121-6. PubMed ID: 12079093 [TBL] [Abstract][Full Text] [Related]
18. Validation of the exposure assessment for veterinary medicinal products. Montforts MH Sci Total Environ; 2006 Apr; 358(1-3):121-36. PubMed ID: 15907974 [TBL] [Abstract][Full Text] [Related]
19. Quantification of acetochlor degradation in the unsaturated zone using two novel in situ field techniques: comparisons with laboratory-generated data and implications for groundwater risk assessments. Mills MS; Hill IR; Newcombe AC; Simmons ND; Vaughan PC; Verity AA Pest Manag Sci; 2001 Apr; 57(4):351-9. PubMed ID: 11455814 [TBL] [Abstract][Full Text] [Related]
20. Improvement and application of the PCPF-1@SWAT2012 model for predicting pesticide transport: a case study of the Sakura River watershed. Tu LH; Boulange J; Iwafune T; Yadav IC; Watanabe H Pest Manag Sci; 2018 Nov; 74(11):2520-2529. PubMed ID: 29656603 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]