These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 16719440)
1. Rational design of a reversible pH-responsive switch for peptide self-assembly. Zimenkov Y; Dublin SN; Ni R; Tu RS; Breedveld V; Apkarian RP; Conticello VP J Am Chem Soc; 2006 May; 128(21):6770-1. PubMed ID: 16719440 [TBL] [Abstract][Full Text] [Related]
2. Design of a selective metal ion switch for self-assembly of peptide-based fibrils. Dublin SN; Conticello VP J Am Chem Soc; 2008 Jan; 130(1):49-51. PubMed ID: 18067302 [TBL] [Abstract][Full Text] [Related]
3. Intramolecular charge interactions as a tool to control the coiled-coil-to-amyloid transformation. Pagel K; Wagner SC; Rezaei Araghi R; von Berlepsch H; Böttcher C; Koksch B Chemistry; 2008; 14(36):11442-51. PubMed ID: 19016556 [TBL] [Abstract][Full Text] [Related]
4. Computer modelling of the alpha-helical coiled coil: packing of side-chains in the inner core. Offer G; Sessions R J Mol Biol; 1995 Jun; 249(5):967-87. PubMed ID: 7791220 [TBL] [Abstract][Full Text] [Related]
5. Role of the buried glutamate in the alpha-helical coiled coil domain of the macrophage scavenger receptor. Suzuki K; Yamada T; Tanaka T Biochemistry; 1999 Feb; 38(6):1751-6. PubMed ID: 10026254 [TBL] [Abstract][Full Text] [Related]
6. De novo design of a model peptide sequence to examine the effects of single amino acid substitutions in the hydrophobic core on both stability and oligomerization state of coiled-coils. Wagschal K; Tripet B; Hodges RS J Mol Biol; 1999 Jan; 285(2):785-803. PubMed ID: 9878444 [TBL] [Abstract][Full Text] [Related]
7. Reversible assembly of helical filaments by de novo designed minimalist peptides. Frost DW; Yip CM; Chakrabartty A Biopolymers; 2005; 80(1):26-33. PubMed ID: 15612048 [TBL] [Abstract][Full Text] [Related]
8. A distinct 14 residue site triggers coiled-coil formation in cortexillin I. Steinmetz MO; Stock A; Schulthess T; Landwehr R; Lustig A; Faix J; Gerisch G; Aebi U; Kammerer RA EMBO J; 1998 Apr; 17(7):1883-91. PubMed ID: 9524112 [TBL] [Abstract][Full Text] [Related]
9. Site-directed mutagenesis of the hinge peptide from the hemagglutinin protein: enhancement of the pH-responsive conformational change. Casali M; Banta S; Zambonelli C; Megeed Z; Yarmush ML Protein Eng Des Sel; 2008 Jun; 21(6):395-404. PubMed ID: 18411225 [TBL] [Abstract][Full Text] [Related]
11. From alpha-helix to beta-sheet--a reversible metal ion induced peptide secondary structure switch. Pagel K; Vagt T; Kohajda T; Koksch B Org Biomol Chem; 2005 Jul; 3(14):2500-2. PubMed ID: 15999178 [TBL] [Abstract][Full Text] [Related]
12. Effects of the sequence and size of non-polar residues on self-assembly of amphiphilic peptides. Wang K; Keasling JD; Muller SJ Int J Biol Macromol; 2005 Sep; 36(4):232-40. PubMed ID: 16055181 [TBL] [Abstract][Full Text] [Related]
13. Investigating the tolerance of coiled-coil peptides to nonheptad sequence inserts. Hicks MR; Walshaw J; Woolfson DN J Struct Biol; 2002; 137(1-2):73-81. PubMed ID: 12064935 [TBL] [Abstract][Full Text] [Related]
14. The role of protonation and metal chelation preferences in defining the properties of mercury-binding coiled coils. Dieckmann GR; McRorie DK; Lear JD; Sharp KA; DeGrado WF; Pecoraro VL J Mol Biol; 1998 Jul; 280(5):897-912. PubMed ID: 9671558 [TBL] [Abstract][Full Text] [Related]
15. Ion-pair and charged hydrogen-bond interactions between histidine and aspartate in a peptide helix. Huyghues-Despointes BM; Baldwin RL Biochemistry; 1997 Feb; 36(8):1965-70. PubMed ID: 9047293 [TBL] [Abstract][Full Text] [Related]
16. pH-sensitivity of the E3/K3 heterodimeric coiled coil. Apostolovic B; Klok HA Biomacromolecules; 2008 Nov; 9(11):3173-80. PubMed ID: 18937405 [TBL] [Abstract][Full Text] [Related]