These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 16719470)

  • 1. Direct observation of the release of phenylalanine from diphenylalanine nanotubes.
    Sedman VL; Adler-Abramovich L; Allen S; Gazit E; Tendler SJ
    J Am Chem Soc; 2006 May; 128(21):6903-8. PubMed ID: 16719470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal and chemical stability of diphenylalanine peptide nanotubes: implications for nanotechnological applications.
    Adler-Abramovich L; Reches M; Sedman VL; Allen S; Tendler SJ; Gazit E
    Langmuir; 2006 Jan; 22(3):1313-20. PubMed ID: 16430299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using the bending beam model to estimate the elasticity of diphenylalanine nanotubes.
    Niu L; Chen X; Allen S; Tendler SJ
    Langmuir; 2007 Jul; 23(14):7443-6. PubMed ID: 17550276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability of diphenylalanine peptide nanotubes in solution.
    Andersen KB; Castillo-Leon J; Hedström M; Svendsen WE
    Nanoscale; 2011 Mar; 3(3):994-8. PubMed ID: 21132174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structure of nanotubes formed by diphenylalanine, the core recognition motif of Alzheimer's beta-amyloid polypeptide.
    Görbitz CH
    Chem Commun (Camb); 2006 Jun; (22):2332-4. PubMed ID: 16733570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nondestructive Raman and atomic force microscopy measurement of molecular structure for individual diphenylalanine nanotubes.
    Lekprasert B; Sedman V; Roberts CJ; Tedler SJ; Notingher I
    Opt Lett; 2010 Dec; 35(24):4193-5. PubMed ID: 21165134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High stability of self-assembled peptide nanowires against thermal, chemical, and proteolytic attacks.
    Ryu J; Park CB
    Biotechnol Bioeng; 2010 Feb; 105(2):221-30. PubMed ID: 19777585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and optical properties of short peptides: nanotubes-to-nanofibers phase transformation.
    Handelman A; Natan A; Rosenman G
    J Pept Sci; 2014 Jul; 20(7):487-93. PubMed ID: 24895323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermomechanical manipulation of aromatic peptide nanotubes.
    Sedman VL; Allen S; Chen X; Roberts CJ; Tendler SJ
    Langmuir; 2009 Jul; 25(13):7256-9. PubMed ID: 19496552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diphenylalanine Peptide Nanotube Energy Harvesters.
    Lee JH; Heo K; Schulz-Schönhagen K; Lee JH; Desai MS; Jin HE; Lee SW
    ACS Nano; 2018 Aug; 12(8):8138-8144. PubMed ID: 30071165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembled phenylalanine-α,β-dehydrophenylalanine nanotubes for sustained intravitreal delivery of a multi-targeted tyrosine kinase inhibitor.
    Panda JJ; Yandrapu S; Kadam RS; Chauhan VS; Kompella UB
    J Control Release; 2013 Dec; 172(3):1151-60. PubMed ID: 24075925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular insights into diphenylalanine nanotube assembly: all-atom simulations of oligomerization.
    Jeon J; Mills CE; Shell MS
    J Phys Chem B; 2013 Apr; 117(15):3935-43. PubMed ID: 23521630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An atomic force microscopy mode for nondestructive electromechanical studies and its application to diphenylalanine peptide nanotubes.
    Kalinin A; Atepalikhin V; Pakhomov O; Kholkin AL; Tselev A
    Ultramicroscopy; 2018 Feb; 185():49-54. PubMed ID: 29182919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charged diphenylalanine nanotubes and controlled hierarchical self-assembly.
    Wang M; Du L; Wu X; Xiong S; Chu PK
    ACS Nano; 2011 Jun; 5(6):4448-54. PubMed ID: 21591732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ thermal imaging and absolute temperature monitoring by luminescent diphenylalanine nanotubes.
    Gan Z; Wu X; Zhang J; Zhu X; Chu PK
    Biomacromolecules; 2013 Jun; 14(6):2112-6. PubMed ID: 23679829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Triphenylalanine peptides self-assemble into nanospheres and nanorods that are different from the nanovesicles and nanotubes formed by diphenylalanine peptides.
    Guo C; Luo Y; Zhou R; Wei G
    Nanoscale; 2014 Mar; 6(5):2800-11. PubMed ID: 24468750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of diphenylalanine/polyaniline core/shell conducting nanowires by peptide self-assembly.
    Ryu J; Park CB
    Angew Chem Int Ed Engl; 2009; 48(26):4820-3. PubMed ID: 19466726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembling diphenylalanine peptide nanotubes selectively eradicate bacterial biofilm infection.
    Porter SL; Coulter SM; Pentlavalli S; Thompson TP; Laverty G
    Acta Biomater; 2018 Sep; 77():96-105. PubMed ID: 30031161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong piezoelectricity in bioinspired peptide nanotubes.
    Kholkin A; Amdursky N; Bdikin I; Gazit E; Rosenman G
    ACS Nano; 2010 Feb; 4(2):610-4. PubMed ID: 20131852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigations of the supramolecular structure of individual diphenylalanine nano- and microtubes by polarized Raman microspectroscopy.
    Lekprasert B; Korolkov V; Falamas A; Chis V; Roberts CJ; Tendler SJ; Notingher I
    Biomacromolecules; 2012 Jul; 13(7):2181-7. PubMed ID: 22662867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.