BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 16719543)

  • 1. Cost-efficient higher-order crossover designs in comparative bioavailability studies.
    Zhou J; Yuan Y; Reynolds R; Raber S; Li Y
    Clin Pharmacokinet; 2006; 45(6):623-32. PubMed ID: 16719543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On assessment of bioequivalence under a higher-order crossover design.
    Chow SC; Liu JP
    J Biopharm Stat; 1992; 2(2):239-56. PubMed ID: 1300216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A note on sample size determination for bioequivalence studies with high-order crossover designs.
    Chen KW; Chow SC; Li G
    J Pharmacokinet Biopharm; 1997 Dec; 25(6):753-65. PubMed ID: 9697082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Testing for bioequivalence of highly variable drugs from TR-RT crossover designs with heterogeneous residual variances.
    Kang Q; Vahl CI
    Pharm Stat; 2017 Sep; 16(5):361-377. PubMed ID: 28620937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of levothyroxine sodium bioavailability: recommendations for an improved methodology based on the pooled analysis of eight identically designed trials with 396 drug exposures.
    Walter-Sack I; Clanget C; Ding R; Goeggelmann C; Hinke V; Lang M; Pfeilschifter J; Tayrouz Y; Wegscheider K
    Clin Pharmacokinet; 2004; 43(14):1037-53. PubMed ID: 15530132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Random-effects linear modeling and sample size tables for two special crossover designs of average bioequivalence studies: the four-period, two-sequence, two-formulation and six-period, three-sequence, three-formulation designs.
    Diaz FJ; Berg MJ; Krebill R; Welty T; Gidal BE; Alloway R; Privitera M
    Clin Pharmacokinet; 2013 Dec; 52(12):1033-43. PubMed ID: 24085600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On statistical power for average bioequivalence testing under replicated crossover designs.
    Wan H; Chow SC
    J Biopharm Stat; 2002 Aug; 12(3):295-309. PubMed ID: 12448572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of group sequential and fixed sample size designs for bioequivalence trials with highly variable drugs.
    Knahl SIE; Lang B; Fleischer F; Kieser M
    Eur J Clin Pharmacol; 2018 May; 74(5):549-559. PubMed ID: 29362819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tests for inter-subject and total variabilities under crossover designs.
    Lee Y; Shao J; Chow SC; Wang H
    J Biopharm Stat; 2002 Nov; 12(4):503-34. PubMed ID: 12477072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blinded sample size re-estimation in crossover bioequivalence trials.
    Golkowski D; Friede T; Kieser M
    Pharm Stat; 2014; 13(3):157-62. PubMed ID: 24715672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal and efficient crossover designs under different assumptions about the carryover effects.
    Hedayat AS; Stufken J
    J Biopharm Stat; 2003 Aug; 13(3):519-28. PubMed ID: 12921398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of parametric and nonparametric two one-sided tests procedures for assessing bioequivalence of average bioavailability.
    Liu JP; Weng CS
    J Biopharm Stat; 1993 Mar; 3(1):85-102. PubMed ID: 8485538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study on the bioequivalence of two formulations of pravastatin. Data from a crossover, randomised, open-label bioequivalence study in healthy volunteers.
    Almeida S; Filipe A; Almeida A; Gich I; Antonijoan R; Puntes M; Barbanoj M; Cruz Caturla M
    Arzneimittelforschung; 2006; 56(2):70-5. PubMed ID: 16572920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Practical approaches for design and analysis of clinical trials of infertility treatments: crossover designs and the Mantel-Haenszel method are recommended.
    Takada M; Sozu T; Sato T
    Pharm Stat; 2015; 14(3):198-204. PubMed ID: 25776032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maximin Efficiencies under Treatment-Dependent Costs and Outcome Variances for Parallel, AA/BB, and AB/BA Designs.
    Candel MJJM
    Comput Math Methods Med; 2018; 2018():8025827. PubMed ID: 30402138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioequivalence of two commercial preparations of trimethoprim/sulfamethoxazole: a randomized, single-dose, single-blind, crossover trial.
    Alonso Campero R; Bernardo Escudero R; Del Cisne Valle Alvarez D; González de la Parra M; Namur Montalvo S; Burke Fraga V; Silva Hernandez R; De Lago Acosta A
    Clin Ther; 2007 Feb; 29(2):326-33. PubMed ID: 17472824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of baseline covariates on the efficiency of statistical analyses of crossover designs.
    Yan Z
    Stat Med; 2013 Mar; 32(6):956-63. PubMed ID: 22903413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative bioavailability of two tablet formulations of metoclopramide hydrochloride.
    el-Sayed YM; Niazy EM; al-Rayes S; Ismail AO; Gouda MW
    Int J Clin Pharmacol Ther; 1995 Mar; 33(3):136-9. PubMed ID: 7599911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of models for average bioequivalence in replicated crossover designs.
    Willavize SA; Morgenthien EA
    Pharm Stat; 2006; 5(3):201-11. PubMed ID: 17080753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crossover versus parallel designs: dose-escalation design comparisons for first-in-human studies.
    Yan Z; Hosmane B; Locke C
    J Biopharm Stat; 2013; 23(4):804-17. PubMed ID: 23786490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.