BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 16719782)

  • 1. Lipid bilayer fragments and disks in drug delivery.
    Carmona-Ribeiro AM
    Curr Med Chem; 2006; 13(12):1359-70. PubMed ID: 16719782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and initial evaluation of PEG-stabilized bilayer disks as novel model membranes.
    Johansson E; Engvall C; Arfvidsson M; Lundahl P; Edwards K
    Biophys Chem; 2005 Feb; 113(2):183-92. PubMed ID: 15617826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nose to Brain Delivery: New Trends in Amphiphile-Based "Soft" Nanocarriers.
    Marianecci C; Rinaldi F; Hanieh PN; Paolino D; Marzio LD; Carafa M
    Curr Pharm Des; 2015; 21(36):5225-32. PubMed ID: 26412357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mixed micelles and other structures in the solubilization of bilayer lipid membranes by surfactants.
    Almgren M
    Biochim Biophys Acta; 2000 Nov; 1508(1-2):146-63. PubMed ID: 11090823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of synthetic lipids on solubilization and colloid stability of hydrophobic drugs.
    Pacheco LF; Carmona-Ribeiro AM
    J Colloid Interface Sci; 2003 Feb; 258(1):146-54. PubMed ID: 12600782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Niosomes as Nano-Delivery Systems in the Pharmaceutical Field.
    Cerqueira-Coutinho C; Dos Santos EP; Mansur CR
    Crit Rev Ther Drug Carrier Syst; 2016; 33(2):195-212. PubMed ID: 27651102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Membrane PEGylation on Entry and Location of Antifungal Drug Itraconazole and Their Pharmacological Implications.
    Dzieciuch-Rojek M; Poojari C; Bednar J; Bunker A; Kozik B; Nowakowska M; Vattulainen I; Wydro P; Kepczynski M; Róg T
    Mol Pharm; 2017 Apr; 14(4):1057-1070. PubMed ID: 28234487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amphiphilic Polypeptoids Rupture Vesicle Bilayers To Form Peptoid-Lipid Fragments Effective in Enhancing Hydrophobic Drug Delivery.
    Zhang Y; Heidari Z; Su Y; Yu T; Xuan S; Omarova M; Aydin Y; Dash S; Zhang D; John V
    Langmuir; 2019 Nov; 35(47):15335-15343. PubMed ID: 31686512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidics based manufacture of liposomes simultaneously entrapping hydrophilic and lipophilic drugs.
    Joshi S; Hussain MT; Roces CB; Anderluzzi G; Kastner E; Salmaso S; Kirby DJ; Perrie Y
    Int J Pharm; 2016 Nov; 514(1):160-168. PubMed ID: 27863660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melittin-lipid interaction: a comparative study using liposomes, micelles and bilayer disks.
    Lundquist A; Wessman P; Rennie AR; Edwards K
    Biochim Biophys Acta; 2008 Oct; 1778(10):2210-6. PubMed ID: 18571494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Materials chemistry: Liposomes derived from molecular vases.
    Safinya CR; Ewert KK
    Nature; 2012 Sep; 489(7416):372-4. PubMed ID: 22996547
    [No Abstract]   [Full Text] [Related]  

  • 12. Lipid bilayer-mediated regulation of ion channel function by amphiphilic drugs.
    Lundbaek JA
    J Gen Physiol; 2008 May; 131(5):421-9. PubMed ID: 18411332
    [No Abstract]   [Full Text] [Related]  

  • 13. Liposomal delivery of hydrophobic weak acids: enhancement of drug retention using a high intraliposomal pH.
    Joguparthi V; Anderson BD
    J Pharm Sci; 2008 Jan; 97(1):433-54. PubMed ID: 17918731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parenteral microemulsions: an overview.
    Date AA; Nagarsenker MS
    Int J Pharm; 2008 May; 355(1-2):19-30. PubMed ID: 18295991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-emulsifying drug delivery systems: an approach to enhance oral bioavailability.
    Kohli K; Chopra S; Dhar D; Arora S; Khar RK
    Drug Discov Today; 2010 Nov; 15(21-22):958-65. PubMed ID: 20727418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surfactant Effects on Lipid-Based Vesicles Properties.
    Bnyan R; Khan I; Ehtezazi T; Saleem I; Gordon S; O'Neill F; Roberts M
    J Pharm Sci; 2018 May; 107(5):1237-1246. PubMed ID: 29336980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes.
    Schroeder A; Kost J; Barenholz Y
    Chem Phys Lipids; 2009 Nov; 162(1-2):1-16. PubMed ID: 19703435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aromaticity/Bulkiness of Surface Ligands to Promote the Interaction of Anionic Amphiphilic Gold Nanoparticles with Lipid Bilayers.
    Gao J; Zhang O; Ren J; Wu C; Zhao Y
    Langmuir; 2016 Feb; 32(6):1601-10. PubMed ID: 26794292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface active drugs: self-association and interaction with membranes and surfactants. Physicochemical and biological aspects.
    Schreier S; Malheiros SV; de Paula E
    Biochim Biophys Acta; 2000 Nov; 1508(1-2):210-34. PubMed ID: 11090827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solubilisation of drugs within liposomal bilayers: alternatives to cholesterol as a membrane stabilising agent.
    Ali MH; Kirby DJ; Mohammed AR; Perrie Y
    J Pharm Pharmacol; 2010 Nov; 62(11):1646-55. PubMed ID: 21039548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.