These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 16720337)

  • 1. Mechanisms controlling CDK9 activity.
    Marshall RM; Grana X
    Front Biosci; 2006 Sep; 11():2598-613. PubMed ID: 16720337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. T-loop phosphorylated Cdk9 localizes to nuclear speckle domains which may serve as sites of active P-TEFb function and exchange between the Brd4 and 7SK/HEXIM1 regulatory complexes.
    Dow EC; Liu H; Rice AP
    J Cell Physiol; 2010 Jul; 224(1):84-93. PubMed ID: 20201073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The emerging picture of CDK9/P-TEFb: more than 20 years of advances since PITALRE.
    Paparidis NF; Durvale MC; Canduri F
    Mol Biosyst; 2017 Jan; 13(2):246-276. PubMed ID: 27833949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular control of gene expression by T-type cyclin/CDK9 complexes.
    Garriga J; Graña X
    Gene; 2004 Aug; 337():15-23. PubMed ID: 15276198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bromodomain protein Brd4 regulates human immunodeficiency virus transcription through phosphorylation of CDK9 at threonine 29.
    Zhou M; Huang K; Jung KJ; Cho WK; Klase Z; Kashanchi F; Pise-Masison CA; Brady JN
    J Virol; 2009 Jan; 83(2):1036-44. PubMed ID: 18971272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. P-TEFb goes viral.
    Zaborowska J; Isa NF; Murphy S
    Bioessays; 2016 Jul; 38 Suppl 1():S75-85. PubMed ID: 27417125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of human immunodeficiency virus type 1 replication by RNA interference directed against human transcription elongation factor P-TEFb (CDK9/CyclinT1).
    Chiu YL; Cao H; Jacque JM; Stevenson M; Rana TM
    J Virol; 2004 Mar; 78(5):2517-29. PubMed ID: 14963154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CDK9 keeps RNA polymerase II on track.
    Egloff S
    Cell Mol Life Sci; 2021 Jul; 78(14):5543-5567. PubMed ID: 34146121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acetylation of conserved lysines in the catalytic core of cyclin-dependent kinase 9 inhibits kinase activity and regulates transcription.
    Sabò A; Lusic M; Cereseto A; Giacca M
    Mol Cell Biol; 2008 Apr; 28(7):2201-12. PubMed ID: 18250157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional inactivation of Cdk9 through oligomerization chain reaction.
    Napolitano G; Mazzocco A; Fraldi A; Majello B; Lania L
    Oncogene; 2003 Jul; 22(31):4882-8. PubMed ID: 12894230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upregulation of cyclin T1/CDK9 complexes during T cell activation.
    Garriga J; Peng J; Parreño M; Price DH; Henderson EE; Graña X
    Oncogene; 1998 Dec; 17(24):3093-102. PubMed ID: 9872325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclin K functions as a CDK9 regulatory subunit and participates in RNA polymerase II transcription.
    Fu TJ; Peng J; Lee G; Price DH; Flores O
    J Biol Chem; 1999 Dec; 274(49):34527-30. PubMed ID: 10574912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA-driven cyclin-dependent kinase regulation: when CDK9/cyclin T subunits of P-TEFb meet their ribonucleoprotein partners.
    Michels AA; Bensaude O
    Biotechnol J; 2008 Aug; 3(8):1022-32. PubMed ID: 18655042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. G-actin participates in RNA polymerase II-dependent transcription elongation by recruiting positive transcription elongation factor b (P-TEFb).
    Qi T; Tang W; Wang L; Zhai L; Guo L; Zeng X
    J Biol Chem; 2011 Apr; 286(17):15171-81. PubMed ID: 21378166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription.
    Jang MK; Mochizuki K; Zhou M; Jeong HS; Brady JN; Ozato K
    Mol Cell; 2005 Aug; 19(4):523-34. PubMed ID: 16109376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. P-TEFb regulation of transcription termination factor Xrn2 revealed by a chemical genetic screen for Cdk9 substrates.
    Sansó M; Levin RS; Lipp JJ; Wang VY; Greifenberg AK; Quezada EM; Ali A; Ghosh A; Larochelle S; Rana TM; Geyer M; Tong L; Shokat KM; Fisher RP
    Genes Dev; 2016 Jan; 30(1):117-31. PubMed ID: 26728557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of multiple cyclin subunits of human P-TEFb.
    Peng J; Zhu Y; Milton JT; Price DH
    Genes Dev; 1998 Mar; 12(5):755-62. PubMed ID: 9499409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic activity of Cdk9 is required for nuclear co-localization of the Cdk9/cyclin T1 (P-TEFb) complex.
    Napolitano G; Majello B; Lania L
    J Cell Physiol; 2003 Oct; 197(1):1-7. PubMed ID: 12942536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peroxisome proliferator-activated receptor gamma recruits the positive transcription elongation factor b complex to activate transcription and promote adipogenesis.
    Iankova I; Petersen RK; Annicotte JS; Chavey C; Hansen JB; Kratchmarova I; Sarruf D; Benkirane M; Kristiansen K; Fajas L
    Mol Endocrinol; 2006 Jul; 20(7):1494-505. PubMed ID: 16484339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of P-TEFb elongation complex activity by CDK9 acetylation.
    Fu J; Yoon HG; Qin J; Wong J
    Mol Cell Biol; 2007 Jul; 27(13):4641-51. PubMed ID: 17452463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.