These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 16720526)

  • 1. The energetics of walking on sand and grass at various speeds.
    Davies SE; Mackinnon SN
    Ergonomics; 2006 Jun; 49(7):651-60. PubMed ID: 16720526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of preferred walking speed on treadmill may lead to high oxygen cost on treadmill walking.
    Dal U; Erdogan T; Resitoglu B; Beydagi H
    Gait Posture; 2010 Mar; 31(3):366-9. PubMed ID: 20129785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pedometer accuracy during walking over different surfaces.
    Leicht AS; Crowther RG
    Med Sci Sports Exerc; 2007 Oct; 39(10):1847-50. PubMed ID: 17909414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of different Lokomat walking conditions on the energy expenditure of hemiparetic patients and healthy subjects.
    Krewer C; Müller F; Husemann B; Heller S; Quintern J; Koenig E
    Gait Posture; 2007 Sep; 26(3):372-7. PubMed ID: 17113774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic cost of over ground gait in younger stroke patients and healthy controls.
    Platts MM; Rafferty D; Paul L
    Med Sci Sports Exerc; 2006 Jun; 38(6):1041-6. PubMed ID: 16775542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The energy expenditure index: a method to quantitate and compare walking energy expenditure for children and adolescents.
    Rose J; Gamble JG; Lee J; Lee R; Haskell WL
    J Pediatr Orthop; 1991; 11(5):571-8. PubMed ID: 1918341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charcot-Marie-Tooth 1A patients with low level of impairment have a higher energy cost of walking than healthy individuals.
    Menotti F; Felici F; Damiani A; Mangiola F; Vannicelli R; Macaluso A
    Neuromuscul Disord; 2011 Jan; 21(1):52-7. PubMed ID: 21074996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of sand versus grass training surfaces during an 8-week pre-season conditioning programme in team sport athletes.
    Binnie MJ; Dawson B; Arnot MA; Pinnington H; Landers G; Peeling P
    J Sports Sci; 2014; 32(11):1001-12. PubMed ID: 24479768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mass-specific energy cost of human walking is set by stature.
    Weyand PG; Smith BR; Puyau MR; Butte NF
    J Exp Biol; 2010 Dec; 213(Pt 23):3972-9. PubMed ID: 21075938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energetics and kinematics of walking in the barnacle goose (Branta leucopsis).
    Nudds RL; Gardiner JD; Tickle PG; Codd JR
    Comp Biochem Physiol A Mol Integr Physiol; 2010 Jul; 156(3):318-24. PubMed ID: 20138237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Walking with a rollator and the level of physical intensity in adults 75 years of age or older.
    Eggermont LH; van Heuvelen MJ; van Keeken BL; Hollander AP; Scherder EJ
    Arch Phys Med Rehabil; 2006 May; 87(5):733-6. PubMed ID: 16635639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preferred and energetically optimal gait transition speeds in human locomotion.
    Hreljac A
    Med Sci Sports Exerc; 1993 Oct; 25(10):1158-62. PubMed ID: 8231761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of terrain on metabolic and temporal gait characteristics of unilateral transtibial amputees.
    Paysant J; Beyaert C; Datié AM; Martinet N; André JM
    J Rehabil Res Dev; 2006; 43(2):153-60. PubMed ID: 16847782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen uptake during walking in patients with rheumatoid arthritis--a controlled study.
    de Carvalho MR; Tebexreni AS; Salles CA; Barros Neto T; Natour J
    J Rheumatol; 2004 Apr; 31(4):655-62. PubMed ID: 15088289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy consumption during level walking with arm and knee immobilized.
    Hanada E; Kerrigan DC
    Arch Phys Med Rehabil; 2001 Sep; 82(9):1251-4. PubMed ID: 11552199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy-speed relationship of walking: standard tables.
    Waters RL; Lunsford BR; Perry J; Byrd R
    J Orthop Res; 1988; 6(2):215-22. PubMed ID: 3343627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological characteristics of the preferred transition speed in racewalkers.
    Ziv G; Rotstein A
    Med Sci Sports Exerc; 2009 Apr; 41(4):797-804. PubMed ID: 19276854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of energy expenditure in children using the RT3 accelerometer.
    Kavouras SA; Sarras SE; Tsekouras YE; Sidossis LS
    J Sports Sci; 2008 Jul; 26(9):959-66. PubMed ID: 18569562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy cost and pole forces during Nordic walking under different surface conditions.
    Schiffer T; Knicker A; Dannöhl R; Strüder HK
    Med Sci Sports Exerc; 2009 Mar; 41(3):663-8. PubMed ID: 19204583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Center of mass motion and the effects of ankle bracing on metabolic cost during submaximal walking trials.
    Herndon SK; Bennett BC; Wolovick A; Filachek A; Gaesser GA; Weltman A; Abel MF
    J Orthop Res; 2006 Dec; 24(12):2170-5. PubMed ID: 17019702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.