These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 16720614)

  • 1. The contribution of extensin network formation to rapid, hydrogen peroxide-mediated increases in grapevine callus wall resistance to fungal lytic enzymes.
    Ribeiro JM; Pereira CS; Soares NC; Vieira AM; Feijó JA; Jackson PA
    J Exp Bot; 2006; 57(9):2025-35. PubMed ID: 16720614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extensin network formation in Vitis vinifera callus cells is an essential and causal event in rapid and H(2)O(2)-induced reduction in primary cell wall hydration.
    Pereira CS; Ribeiro JM; Vatulescu AD; Findlay K; MacDougall AJ; Jackson PA
    BMC Plant Biol; 2011 Jun; 11():106. PubMed ID: 21672244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid deposition of extensin during the elicitation of grapevine callus cultures is specifically catalyzed by a 40-kilodalton peroxidase.
    Jackson PA; Galinha CI; Pereira CS; Fortunato A; Soares NC; Amâncio SB; Pinto Ricardo CP
    Plant Physiol; 2001 Nov; 127(3):1065-76. PubMed ID: 11706187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effect of hydrogen peroxide on morphological characteristics and resistance of wheat calluses to the stinking smut fungus].
    Troshina NB; Iarullina LG; Iusupova ZR; Syrina OB; Maksimov IV
    Prikl Biokhim Mikrobiol; 2008; 44(3):353-6. PubMed ID: 18663963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and characterization of a Vitis vinifera transcription factor, VvWRKY1, and its effect on responses to fungal pathogens in transgenic tobacco plants.
    Marchive C; Mzid R; Deluc L; Barrieu F; Pirrello J; Gauthier A; Corio-Costet MF; Regad F; Cailleteau B; Hamdi S; Lauvergeat V
    J Exp Bot; 2007; 58(8):1999-2010. PubMed ID: 17456504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional and metabolic profiling of grape (Vitis vinifera L.) leaves unravel possible innate resistance against pathogenic fungi.
    Figueiredo A; Fortes AM; Ferreira S; Sebastiana M; Choi YH; Sousa L; Acioli-Santos B; Pessoa F; Verpoorte R; Pais MS
    J Exp Bot; 2008; 59(12):3371-81. PubMed ID: 18648103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonhost versus host resistance to the grapevine downy mildew, Plasmopara viticola, studied at the tissue level.
    Díez-Navajas AM; Wiedemann-Merdinoglu S; Greif C; Merdinoglu D
    Phytopathology; 2008 Jul; 98(7):776-80. PubMed ID: 18943253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accumulation and localization of extensin protein in apoplast of pea root nodule under aluminum stress.
    Sujkowska-Rybkowska M; Borucki W
    Micron; 2014 Dec; 67():10-19. PubMed ID: 25004847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxalate, germins, and higher-plant pathogens.
    Lane BG
    IUBMB Life; 2002 Feb; 53(2):67-75. PubMed ID: 12049198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epitope tagging of legume root nodule extensin modifies protein structure and crosslinking in cell walls of transformed tobacco leaves.
    Gucciardo S; Rathbun EA; Shanks M; Jenkyns S; Mak L; Durrant MC; Brewin NJ
    Mol Plant Microbe Interact; 2005 Jan; 18(1):24-32. PubMed ID: 15672815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of hydroxyl radical in isolated pea root cell wall, and the role of cell wall-bound peroxidase, Mn-SOD and phenolics in their production.
    Kukavica B; Mojovic M; Vuccinic Z; Maksimovic V; Takahama U; Jovanovic SV
    Plant Cell Physiol; 2009 Feb; 50(2):304-17. PubMed ID: 19098072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of VvWRKY2 in tobacco enhances broad resistance to necrotrophic fungal pathogens.
    Mzid R; Marchive C; Blancard D; Deluc L; Barrieu F; Corio-Costet MF; Drira N; Hamdi S; Lauvergeat V
    Physiol Plant; 2007 Nov; 131(3):434-47. PubMed ID: 18251882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathogenesis of Eutypa lata in grapevine: identification of virulence factors and biochemical characterization of cordon dieback.
    Rolshausen PE; Greve LC; Labavitch JM; Mahoney NE; Molyneux RJ; Gubler WD
    Phytopathology; 2008 Feb; 98(2):222-9. PubMed ID: 18943199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The structure and synthesis of the fungal cell wall.
    Bowman SM; Free SJ
    Bioessays; 2006 Aug; 28(8):799-808. PubMed ID: 16927300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell wall modification in grapevine cells in response to UV stress investigated by atomic force microscopy.
    Lesniewska E; Adrian M; Klinguer A; Pugin A
    Ultramicroscopy; 2004 Aug; 100(3-4):171-8. PubMed ID: 15231307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A beta-1,3 glucan sulfate induces resistance in grapevine against Plasmopara viticola through priming of defense responses, including HR-like cell death.
    Trouvelot S; Varnier AL; Allègre M; Mercier L; Baillieul F; Arnould C; Gianinazzi-Pearson V; Klarzynski O; Joubert JM; Pugin A; Daire X
    Mol Plant Microbe Interact; 2008 Feb; 21(2):232-43. PubMed ID: 18184067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation, functional characterization, and expression analysis of grapevine (Vitis vinifera L.) hexose transporters: differential roles in sink and source tissues.
    Hayes MA; Davies C; Dry IB
    J Exp Bot; 2007; 58(8):1985-97. PubMed ID: 17452752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural proteins of the primary cell wall: extraction, purification, and analysis.
    Lamport DT; Tan L; Kieliszewski MJ
    Methods Mol Biol; 2011; 715():209-19. PubMed ID: 21222087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatio-temporal immunolocalization of extensin protein and hemicellulose polysaccharides during olive fruit abscission.
    Parra R; Gomez-Jimenez MC
    Planta; 2020 Aug; 252(3):32. PubMed ID: 32757074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The SPI1 gene, encoding a glycosylphosphatidylinositol-anchored cell wall protein, plays a prominent role in the development of yeast resistance to lipophilic weak-acid food preservatives.
    Simões T; Mira NP; Fernandes AR; Sá-Correia I
    Appl Environ Microbiol; 2006 Nov; 72(11):7168-75. PubMed ID: 16980434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.