These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 16720649)
1. ACT domain repeat protein 7, ACR7, interacts with a chaperone HSP18.0-CII in rice nuclei. Hayakawa T; Kudo T; Ito T; Takahashi N; Yamaya T Plant Cell Physiol; 2006 Jul; 47(7):891-904. PubMed ID: 16720649 [TBL] [Abstract][Full Text] [Related]
2. Cellular distribution of ACT domain repeat protein 9, a nuclear localizing protein, in rice (Oryza sativa). Kudo T; Kawai A; Yamaya T; Hayakawa T Physiol Plant; 2008 Jun; 133(2):167-79. PubMed ID: 18282189 [TBL] [Abstract][Full Text] [Related]
3. Interaction of N-acetylglutamate kinase with a PII-like protein in rice. Sugiyama K; Hayakawa T; Kudo T; Ito T; Yamaya T Plant Cell Physiol; 2004 Dec; 45(12):1768-78. PubMed ID: 15653795 [TBL] [Abstract][Full Text] [Related]
4. Two uncoupling protein genes of rice (Oryza sativa L.): molecular study reveals the defects in the pre-mRNA processing for the heat-generating proteins of the subtropical cereal. Watanabe A; Hirai A Planta; 2002 May; 215(1):90-100. PubMed ID: 12012245 [TBL] [Abstract][Full Text] [Related]
5. OsSET1, a novel SET-domain-containing gene from rice. Liang YK; Wang Y; Zhang Y; Li SG; Lu XC; Li H; Zou C; Xu ZH; Bai SN J Exp Bot; 2003 Aug; 54(389):1995-6. PubMed ID: 12815033 [TBL] [Abstract][Full Text] [Related]
6. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis. Guo J; Wu J; Ji Q; Wang C; Luo L; Yuan Y; Wang Y; Wang J J Genet Genomics; 2008 Feb; 35(2):105-18. PubMed ID: 18407058 [TBL] [Abstract][Full Text] [Related]
7. Characterization of a unique genomic clone located 5' upstream of the Oshsp16.9B gene on chromosome 1 in rice (Oryza sativa L. cv Tainung No. 67). Guan JC; Li XH; Zhang QF; Kochert G; Lin CY Theor Appl Genet; 2003 Feb; 106(3):503-11. PubMed ID: 12589551 [TBL] [Abstract][Full Text] [Related]
8. Constitutive expression of pathogen-inducible OsWRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants. Zhang J; Peng Y; Guo Z Cell Res; 2008 Apr; 18(4):508-21. PubMed ID: 18071364 [TBL] [Abstract][Full Text] [Related]
9. Whole genome analysis of the OsGRF gene family encoding plant-specific putative transcription activators in rice (Oryza sativa L.). Choi D; Kim JH; Kende H Plant Cell Physiol; 2004 Jul; 45(7):897-904. PubMed ID: 15295073 [TBL] [Abstract][Full Text] [Related]
10. Characterization of the origin recognition complex (ORC) from a higher plant, rice (Oryza sativa L.). Mori Y; Yamamoto T; Sakaguchi N; Ishibashi T; Furukawa T; Kadota Y; Kuchitsu K; Hashimoto J; Kimura S; Sakaguchi K Gene; 2005 Jun; 353(1):23-30. PubMed ID: 15939553 [TBL] [Abstract][Full Text] [Related]
11. Identification and functional analysis of the MOC1 interacting protein 1. Sun F; Zhang W; Xiong G; Yan M; Qian Q; Li J; Wang Y J Genet Genomics; 2010 Jan; 37(1):69-77. PubMed ID: 20171579 [TBL] [Abstract][Full Text] [Related]
12. Overexpression of a GRAS protein lacking the DELLA domain confers altered gibberellin responses in rice. Itoh H; Shimada A; Ueguchi-Tanaka M; Kamiya N; Hasegawa Y; Ashikari M; Matsuoka M Plant J; 2005 Nov; 44(4):669-79. PubMed ID: 16262715 [TBL] [Abstract][Full Text] [Related]
13. Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Chen JQ; Meng XP; Zhang Y; Xia M; Wang XP Biotechnol Lett; 2008 Dec; 30(12):2191-8. PubMed ID: 18779926 [TBL] [Abstract][Full Text] [Related]
14. Functional analysis of OsHSBP1 and OsHSBP2 revealed their involvement in the heat shock response in rice (Oryza sativa L.). Rana RM; Dong S; Tang H; Ahmad F; Zhang H J Exp Bot; 2012 Oct; 63(16):6003-16. PubMed ID: 22996677 [TBL] [Abstract][Full Text] [Related]
15. Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection. Mei C; Qi M; Sheng G; Yang Y Mol Plant Microbe Interact; 2006 Oct; 19(10):1127-37. PubMed ID: 17022177 [TBL] [Abstract][Full Text] [Related]
16. Functional isolation of novel nuclear proteins showing a variety of subnuclear localizations. Moriguchi K; Suzuki T; Ito Y; Yamazaki Y; Niwa Y; Kurata N Plant Cell; 2005 Feb; 17(2):389-403. PubMed ID: 15659629 [TBL] [Abstract][Full Text] [Related]
17. Cell-wall invertases from rice are differentially expressed in Caryopsis during the grain filling stage. Wang YQ; Wei XL; Xu HL; Chai CL; Meng K; Zhai HL; Sun AJ; Peng YG; Wu B; Xiao GF; Zhu Z J Integr Plant Biol; 2008 Apr; 50(4):466-74. PubMed ID: 18713381 [TBL] [Abstract][Full Text] [Related]
18. Characterization and functional analysis of phosphoenolpyruvate carboxylase kinase genes in rice. Fukayama H; Tamai T; Taniguchi Y; Sullivan S; Miyao M; Nimmo HG Plant J; 2006 Jul; 47(2):258-68. PubMed ID: 16762031 [TBL] [Abstract][Full Text] [Related]
19. Rice Immature Pollen 1 (RIP1) is a regulator of late pollen development. Han MJ; Jung KH; Yi G; Lee DY; An G Plant Cell Physiol; 2006 Nov; 47(11):1457-72. PubMed ID: 16990291 [TBL] [Abstract][Full Text] [Related]
20. Comparative analysis of the SBP-box gene families in P. patens and seed plants. Riese M; Höhmann S; Saedler H; Münster T; Huijser P Gene; 2007 Oct; 401(1-2):28-37. PubMed ID: 17689888 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]