BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 16720702)

  • 1. Zinc binding to a regulatory zinc-sensing domain monitored in vivo by using FRET.
    Qiao W; Mooney M; Bird AJ; Winge DR; Eide DJ
    Proc Natl Acad Sci U S A; 2006 Jun; 103(23):8674-9. PubMed ID: 16720702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution structure of a Zap1 zinc-responsive domain provides insights into metalloregulatory transcriptional repression in Saccharomyces cerevisiae.
    Wang Z; Feng LS; Matskevich V; Venkataraman K; Parasuram P; Laity JH
    J Mol Biol; 2006 Apr; 357(4):1167-83. PubMed ID: 16483601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zinc metalloregulation of the zinc finger pair domain.
    Bird AJ; Swierczek S; Qiao W; Eide DJ; Winge DR
    J Biol Chem; 2006 Sep; 281(35):25326-35. PubMed ID: 16829533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two of the five zinc fingers in the Zap1 transcription factor DNA binding domain dominate site-specific DNA binding.
    Evans-Galea MV; Blankman E; Myszka DG; Bird AJ; Eide DJ; Winge DR
    Biochemistry; 2003 Feb; 42(4):1053-61. PubMed ID: 12549926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zinc fingers can act as Zn2+ sensors to regulate transcriptional activation domain function.
    Bird AJ; McCall K; Kramer M; Blankman E; Winge DR; Eide DJ
    EMBO J; 2003 Oct; 22(19):5137-46. PubMed ID: 14517251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A dual role for zinc fingers in both DNA binding and zinc sensing by the Zap1 transcriptional activator.
    Bird AJ; Zhao H; Luo H; Jensen LT; Srinivasan C; Evans-Galea M; Winge DR; Eide DJ
    EMBO J; 2000 Jul; 19(14):3704-13. PubMed ID: 10899124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zap1 activation domain 1 and its role in controlling gene expression in response to cellular zinc status.
    Herbig A; Bird AJ; Swierczek S; McCall K; Mooney M; Wu CY; Winge DR; Eide DJ
    Mol Microbiol; 2005 Aug; 57(3):834-46. PubMed ID: 16045625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of protein structure and the role of individual fingers in zinc finger protein-DNA recognition: a molecular dynamics simulation study and free energy calculations.
    Hamed MY
    J Comput Aided Mol Des; 2018 Jun; 32(6):657-669. PubMed ID: 29725908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of two activation domains in Zap1 in the response to zinc deficiency in Saccharomyces cerevisiae.
    Frey AG; Eide DJ
    J Biol Chem; 2011 Feb; 286(8):6844-54. PubMed ID: 21177862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping the DNA binding domain of the Zap1 zinc-responsive transcriptional activator.
    Bird A; Evans-Galea MV; Blankman E; Zhao H; Luo H; Winge DR; Eide DJ
    J Biol Chem; 2000 May; 275(21):16160-6. PubMed ID: 10747942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role for first zinc finger of WT1 in DNA sequence specificity: Denys-Drash syndrome-associated WT1 mutant in ZF1 enhances affinity for a subset of WT1 binding sites.
    Wang D; Horton JR; Zheng Y; Blumenthal RM; Zhang X; Cheng X
    Nucleic Acids Res; 2018 May; 46(8):3864-3877. PubMed ID: 29294058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solution structure of the RNA binding domain in the human muscleblind-like protein 2.
    He F; Dang W; Abe C; Tsuda K; Inoue M; Watanabe S; Kobayashi N; Kigawa T; Matsuda T; Yabuki T; Aoki M; Seki E; Harada T; Tomabechi Y; Terada T; Shirouzu M; Tanaka A; Güntert P; Muto Y; Yokoyama S
    Protein Sci; 2009 Jan; 18(1):80-91. PubMed ID: 19177353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two singular types of CCCH tandem zinc finger in Nab2p contribute to polyadenosine RNA recognition.
    Martínez-Lumbreras S; Santiveri CM; Mirassou Y; Zorrilla S; Pérez-Cañadillas JM
    Structure; 2013 Oct; 21(10):1800-11. PubMed ID: 23994011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional and structural basis of the nuclear localization signal in the ZIC3 zinc finger domain.
    Hatayama M; Tomizawa T; Sakai-Kato K; Bouvagnet P; Kose S; Imamoto N; Yokoyama S; Utsunomiya-Tate N; Mikoshiba K; Kigawa T; Aruga J
    Hum Mol Genet; 2008 Nov; 17(22):3459-73. PubMed ID: 18716025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zinc-regulated DNA binding of the yeast Zap1 zinc-responsive activator.
    Frey AG; Bird AJ; Evans-Galea MV; Blankman E; Winge DR; Eide DJ
    PLoS One; 2011; 6(7):e22535. PubMed ID: 21799889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural metal sites in nonclassical zinc finger proteins involved in transcriptional and translational regulation.
    Lee SJ; Michel SL
    Acc Chem Res; 2014 Aug; 47(8):2643-50. PubMed ID: 25098749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The conserved basic residues and the charged amino acid residues at the α-helix of the zinc finger motif regulate the nuclear transport activity of triple C2H2 zinc finger proteins.
    Lin CY; Lin LY
    PLoS One; 2018; 13(1):e0191971. PubMed ID: 29381770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential role of Snail1 and Snail2 zinc fingers in E-cadherin repression and epithelial to mesenchymal transition.
    Villarejo A; Cortés-Cabrera A; Molina-Ortíz P; Portillo F; Cano A
    J Biol Chem; 2014 Jan; 289(2):930-41. PubMed ID: 24297167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential control of Zap1-regulated genes in response to zinc deficiency in Saccharomyces cerevisiae.
    Wu CY; Bird AJ; Chung LM; Newton MA; Winge DR; Eide DJ
    BMC Genomics; 2008 Aug; 9():370. PubMed ID: 18673560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zap1-dependent transcription from an alternative upstream promoter controls translation of RTC4 mRNA in zinc-deficient Saccharomyces cerevisiae.
    Taggart J; MacDiarmid CW; Haws S; Eide DJ
    Mol Microbiol; 2017 Dec; 106(5):678-689. PubMed ID: 28963784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.