BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 16720905)

  • 1. Lactic acid production from cellulosic material by synergetic hydrolysis and fermentation.
    Shen X; Xia L
    Appl Biochem Biotechnol; 2006 Jun; 133(3):251-62. PubMed ID: 16720905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Studies on immobilized cellobiase].
    Shen XL; Xia LM
    Sheng Wu Gong Cheng Xue Bao; 2003 Mar; 19(2):236-9. PubMed ID: 15966329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient hydrolysis of corncob residue through cellulolytic enzymes from Trichoderma strain G26 and L-lactic acid preparation with the hydrolysate.
    Xie L; Zhao J; Wu J; Gao M; Zhao Z; Lei X; Zhao Y; Yang W; Gao X; Ma C; Liu H; Wu F; Wang X; Zhang F; Guo P; Dai G
    Bioresour Technol; 2015 Oct; 193():331-6. PubMed ID: 26143000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brewer's spent grain as raw material for lactic acid production by Lactobacillus delbrueckii.
    Mussatto SI; Fernandes M; Dragone G; Mancilha IM; Roberto IC
    Biotechnol Lett; 2007 Dec; 29(12):1973-6. PubMed ID: 17700998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-yield cellulase production by Trichoderma reesei ZU-02 on corn cob residue.
    Liming X; Xueliang S
    Bioresour Technol; 2004 Feb; 91(3):259-62. PubMed ID: 14607485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Saccharification of corn stover by immobilized Trichoderma reesei cells].
    Xia L; Dai S; Cen P
    Wei Sheng Wu Xue Bao; 1998 Apr; 38(2):114-9. PubMed ID: 12549371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel mixing strategy for maximizing yields of glucose and reducing sugar in enzymatic hydrolysis of cellulose.
    Pal RK; Chakraborty S
    Bioresour Technol; 2013 Nov; 148():611-4. PubMed ID: 24076148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of lactic acid from paper sludge by simultaneous saccharification and fermentation.
    Lee SM; Koo YM; Lin J
    Adv Biochem Eng Biotechnol; 2004; 87():173-94. PubMed ID: 15217107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cost-effective simultaneous saccharification and fermentation of l-lactic acid from bagasse sulfite pulp by Bacillus coagulans CC17.
    Zhou J; Ouyang J; Xu Q; Zheng Z
    Bioresour Technol; 2016 Dec; 222():431-438. PubMed ID: 27750196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of simultaneous saccharification and lactic acid fermentation processes.
    Luo J; Xia L; Lin J; Cen P
    Biotechnol Prog; 1997; 13(6):762-7. PubMed ID: 9413134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. D-Lactic acid biosynthesis from biomass-derived sugars via Lactobacillus delbrueckii fermentation.
    Zhang Y; Vadlani PV
    Bioprocess Biosyst Eng; 2013 Dec; 36(12):1897-904. PubMed ID: 23670636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous saccharification and co-fermentation of crystalline cellulose and sugar cane bagasse hemicellulose hydrolysate to lactate by a thermotolerant acidophilic Bacillus sp.
    Patel MA; Ou MS; Ingram LO; Shanmugam KT
    Biotechnol Prog; 2005; 21(5):1453-60. PubMed ID: 16209550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of lactic acid from cellobiose and cellotriose by Lactobacillus delbrueckii mutant Uc-3.
    Adsul M; Khire J; Bastawde K; Gokhale D
    Appl Environ Microbiol; 2007 Aug; 73(15):5055-7. PubMed ID: 17557849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient production of l-lactic acid from hydrolysate of Jerusalem artichoke with immobilized cells of Lactococcus lactis in fibrous bed bioreactors.
    Shi Z; Wei P; Zhu X; Cai J; Huang L; Xu Z
    Enzyme Microb Technol; 2012 Oct; 51(5):263-8. PubMed ID: 22975123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of lactic acid and fructose from media with cane sugar using mutant of Lactobacillus delbrueckii NCIM 2365.
    Patil SS; Kadam SR; Patil SS; Bastawde KB; Khire JM; Gokhale DV
    Lett Appl Microbiol; 2006 Jul; 43(1):53-7. PubMed ID: 16834721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. D-Lactic acid production by Sporolactobacillus inulinus YBS1-5 with simultaneous utilization of cottonseed meal and corncob residue.
    Bai Z; Gao Z; Sun J; Wu B; He B
    Bioresour Technol; 2016 May; 207():346-52. PubMed ID: 26897413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced L-(+)-lactic acid production by an adapted strain of Rhizopus oryzae using corncob hydrolysate.
    Bai DM; Li SZ; Liu ZL; Cui ZF
    Appl Biochem Biotechnol; 2008 Jan; 144(1):79-85. PubMed ID: 18415989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SSF production of lactic acid from cellulosic biosludges.
    Romaní A; Yáñez R; Garrote G; Alonso JL
    Bioresour Technol; 2008 Jul; 99(10):4247-54. PubMed ID: 17928224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of L(+) lactic acid from cassava starch hydrolyzate by immobilized Lactobacillus delbrueckii.
    John RP; Nampoothiri KM; Pandey A
    J Basic Microbiol; 2007 Feb; 47(1):25-30. PubMed ID: 17304614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacillus sp. strain P38: an efficient producer of L-lactate from cellulosic hydrolysate, with high tolerance for 2-furfural.
    Peng L; Wang L; Che C; Yang G; Yu B; Ma Y
    Bioresour Technol; 2013 Dec; 149():169-76. PubMed ID: 24096283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.