These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83 related articles for article (PubMed ID: 16721627)
1. Discrimination between modes of toxic action of phenols using rule based methods. Norinder U; Lidén P; Boström H Mol Divers; 2006 May; 10(2):207-12. PubMed ID: 16721627 [TBL] [Abstract][Full Text] [Related]
2. Comparative study to predict toxic modes of action of phenols from molecular structures. Brito-Sánchez Y; Castillo-Garit JA; Le-Thi-Thu H; González-Madariaga Y; Torrens F; Marrero-Ponce Y; Rodríguez-Borges JE SAR QSAR Environ Res; 2013; 24(3):235-51. PubMed ID: 23437773 [TBL] [Abstract][Full Text] [Related]
3. Stepwise discrimination between four modes of toxic action of phenols in the Tetrahymena pyriformis assay. Schüürmann G; Aptula AO; Kühne R; Ebert RU Chem Res Toxicol; 2003 Aug; 16(8):974-87. PubMed ID: 12924925 [TBL] [Abstract][Full Text] [Related]
4. Machine learning-based models to predict modes of toxic action of phenols to Tetrahymena pyriformis. Castillo-Garit JA; Casañola-Martin GM; Barigye SJ; Pham-The H; Torrens F; Torreblanca A SAR QSAR Environ Res; 2017 Sep; 28(9):735-747. PubMed ID: 29022372 [TBL] [Abstract][Full Text] [Related]
5. An evaluation of global QSAR models for the prediction of the toxicity of phenols to Tetrahymena pyriformis. Enoch SJ; Cronin MT; Schultz TW; Madden JC Chemosphere; 2008 Apr; 71(7):1225-32. PubMed ID: 18261763 [TBL] [Abstract][Full Text] [Related]
6. Mode of action-based classification and prediction of activity of uncouplers for the screening of chemical inventories. Spycher S; Netzeva TI; Worth AP; Escher BI SAR QSAR Environ Res; 2008; 19(5-6):433-63. PubMed ID: 18853296 [TBL] [Abstract][Full Text] [Related]
7. Bridging the gap between molecular descriptors and mechanism: cases studies by molecular dynamics simulations. Xu L; Wang X; Zhao W J Mol Graph Model; 2009 Apr; 27(7):829-35. PubMed ID: 19195915 [TBL] [Abstract][Full Text] [Related]
8. Use of structure descriptors to discriminate between modes of toxic action of phenols. Spycher S; Pellegrini E; Gasteiger J J Chem Inf Model; 2005; 45(1):200-8. PubMed ID: 15667146 [TBL] [Abstract][Full Text] [Related]
9. Chromatographic retention-activity relationships for prediction of the toxicity pH-dependence of phenols. Bermúdez-Saldaña JM; Escuder-Gilabert L; Medina-Hernández MJ; Villanueva-Camañas RM; Sagrado S Chemosphere; 2007 Aug; 69(1):108-17. PubMed ID: 17553545 [TBL] [Abstract][Full Text] [Related]
10. Quantitative structure-activity relationship for prediction of the toxicity of phenols on Photobacterium phosphoreum. Li X; Wang Z; Liu H; Yu H Bull Environ Contam Toxicol; 2012 Jul; 89(1):27-31. PubMed ID: 22562268 [TBL] [Abstract][Full Text] [Related]
11. In silico prediction of toxic action mechanisms of phenols for imbalanced data with Random Forest learner. Chen J; Tang YY; Fang B; Guo C J Mol Graph Model; 2012 May; 35():21-7. PubMed ID: 22481075 [TBL] [Abstract][Full Text] [Related]
12. Toxicity of organic chemicals to Tetrahymena pyriformis: effect of polarity and ionization on toxicity. Zhao YH; Zhang XJ; Wen Y; Sun FT; Guo Z; Qin WC; Qin HW; Xu JL; Sheng LX; Abraham MH Chemosphere; 2010 Mar; 79(1):72-7. PubMed ID: 20079521 [TBL] [Abstract][Full Text] [Related]
13. Biopartitioning micellar chromatography: an alternative high-throughput method for assessing the ecotoxicity of anilines and phenols. Bermúdez-Saldaña JM; Escuder-Gilabert L; Medina-Hernández MJ; Villanueva-Camañas RM; Sagrado S J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Jun; 852(1-2):353-61. PubMed ID: 17347057 [TBL] [Abstract][Full Text] [Related]
14. Phenol mechanism of toxic action classification and prediction: a decision tree approach. Ren S Toxicol Lett; 2003 Oct; 144(3):313-23. PubMed ID: 12927349 [TBL] [Abstract][Full Text] [Related]
15. QSARs for monosubstituted phenols and the polar narcosis mechanism of toxicity. Schultz TW; Lin DT; Wesley SK Qual Assur; 1992 Feb; 1(2):132-43. PubMed ID: 1344212 [TBL] [Abstract][Full Text] [Related]
16. Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks, and multiple linear regression. Yao XJ; Panaye A; Doucet JP; Zhang RS; Chen HF; Liu MC; Hu ZD; Fan BT J Chem Inf Comput Sci; 2004; 44(4):1257-66. PubMed ID: 15272833 [TBL] [Abstract][Full Text] [Related]
17. Assessment of baseline toxicity of mono-cyclic aromatic compounds by pseudomonas initial oxygen uptake assay. Whang TJ; Wang YT; Wu YP; Wang YS; Tsai MC; Huang DS SAR QSAR Environ Res; 2005 Jun; 16(3):247-62. PubMed ID: 15804812 [TBL] [Abstract][Full Text] [Related]
18. A new approach to QSAR modelling of acute toxicity. Lagunin AA; Zakharov AV; Filimonov DA; Poroikov VV SAR QSAR Environ Res; 2007; 18(3-4):285-98. PubMed ID: 17514571 [TBL] [Abstract][Full Text] [Related]
19. Determining the mechanisms of toxic action of phenols to Tetrahymena pyriformis. Ren S Environ Toxicol; 2002; 17(2):119-27. PubMed ID: 11979590 [TBL] [Abstract][Full Text] [Related]
20. Mechanism-based quantitative structure-phytotoxicity relationships comparative inhibition of substituted phenols on root elongation of Cucumis sativus. Wang X; Wang Y; Chunsheng Y; Wang L; Han S Arch Environ Contam Toxicol; 2002 Jan; 42(1):29-35. PubMed ID: 11706365 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]