BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 16721660)

  • 1. Soret spectral and bioinformatic approaches provide evidence for a critical role of the alpha -subunit in assembly of tetrameric hemoglobin.
    Vasudevan G; McDonald MJ
    Protein J; 2006 Jan; 25(1):45-56. PubMed ID: 16721660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature dependent soret spectral band shifts accompany human CN-mesohemoglobin assembly.
    Fonseka PV; Vasudevan G; Clarizia LJ; McDonald MJ
    Protein J; 2007 Jun; 26(4):257-63. PubMed ID: 17191128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Esterification of the propionate groups promotes alpha/beta hemoglobin chain homogeneity of CN-hemin binding.
    Jennings TM; McDonald MJ
    Biochem Biophys Res Commun; 2002 May; 293(5):1354-7. PubMed ID: 12054662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wavelength-dependent spectral changes accompany CN-hemin binding to human apohemoglobin.
    Vasudevan G; McDonald MJ
    J Protein Chem; 2000 Oct; 19(7):583-90. PubMed ID: 11233172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral demonstration of semihemoglobin formation during CN-hemin incorporation into human apohemoglobins.
    Vasudevan G; McDonald MJ
    J Biol Chem; 1997 Jan; 272(1):517-24. PubMed ID: 8995292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of roles of surface histidyl residues in the molecular basis of the Bohr effect and of beta 143 histidine in the binding of 2,3-bisphosphoglycerate in human normal adult hemoglobin.
    Fang TY; Zou M; Simplaceanu V; Ho NT; Ho C
    Biochemistry; 1999 Oct; 38(40):13423-32. PubMed ID: 10529219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequential assignment of proton resonances in the NMR spectrum of Zn-substituted alpha chains from human hemoglobin. Ligand-induced tertiary changes in the heme pocket.
    Martineau L; Craescu CT
    Eur J Biochem; 1993 Jun; 214(2):383-93. PubMed ID: 8513788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly asymmetric interactions between globin chains during hemoglobin assembly revealed by electrospray ionization mass spectrometry.
    Griffith WP; Kaltashov IA
    Biochemistry; 2003 Aug; 42(33):10024-33. PubMed ID: 12924951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ordered heme binding ensures the assembly of fully functional hemoglobin: a hypothesis.
    Vasudevan G; McDonald MJ
    Curr Protein Pept Sci; 2002 Aug; 3(4):461-6. PubMed ID: 12370008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of surface histidyl residues in the alpha-chain to the Bohr effect of human normal adult hemoglobin: roles of global electrostatic effects.
    Sun DP; Zou M; Ho NT; Ho C
    Biochemistry; 1997 Jun; 36(22):6663-73. PubMed ID: 9184146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural analysis of fish versus mammalian hemoglobins: effect of the heme pocket environment on autooxidation and hemin loss.
    Aranda R; Cai H; Worley CE; Levin EJ; Li R; Olson JS; Phillips GN; Richards MP
    Proteins; 2009 Apr; 75(1):217-30. PubMed ID: 18831041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of Active Apohemoglobin Heme-Binding Sites via Dicyanohemin Incorporation.
    Pires IS; Belcher DA; Palmer AF
    Biochemistry; 2017 Oct; 56(40):5245-5259. PubMed ID: 28846391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The swinging movement of the distal histidine residue and the autoxidation reaction for midge larval hemoglobins.
    Kamimura S; Matsuoka A; Imai K; Shikama K
    Eur J Biochem; 2003 Apr; 270(7):1424-33. PubMed ID: 12653997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of human apohemoglobin dimer dissociation.
    Moulton DP; McDonald MJ
    Biochem Biophys Res Commun; 1994 Mar; 199(3):1278-83. PubMed ID: 8147871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substitution of the heme binding module in hemoglobin alpha- and beta-subunits. Implication for different regulation mechanisms of the heme proximal structure between hemoglobin and myoglobin.
    Inaba K; Ishimori K; Imai K; Morishima I
    J Biol Chem; 2000 Apr; 275(17):12438-45. PubMed ID: 10777528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UV resonance Raman studies of alpha-nitrosyl hemoglobin derivatives: relation between the alpha 1-beta 2 subunit interface interactions and the Fe-histidine bonding of alpha heme.
    Nagatomo S; Nagai M; Tsuneshige A; Yonetani T; Kitagawa T
    Biochemistry; 1999 Jul; 38(30):9659-66. PubMed ID: 10423244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand binding properties and structural studies of recombinant and chemically modified hemoglobins altered at beta 93 cysteine.
    Cheng Y; Shen TJ; Simplaceanu V; Ho C
    Biochemistry; 2002 Oct; 41(39):11901-13. PubMed ID: 12269835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circular dichroism of hemoglobin and myoglobin.
    Nagai M; Nagai Y; Imai K; Neya S
    Chirality; 2014 Sep; 26(9):438-42. PubMed ID: 24425582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of the beta 146 histidyl residue in the molecular basis of the Bohr effect of hemoglobin: a proton nuclear magnetic resonance study.
    Busch MR; Mace JE; Ho NT; Ho C
    Biochemistry; 1991 Feb; 30(7):1865-77. PubMed ID: 1993201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the vinyl-globin interactions on the temperature-dependent broadening of the Soret spectra: a study with horse myoglobin and Scapharca dimeric hemoglobin reconstituted with unnatural 2,4-heme derivatives.
    Boffi A; Zamparelli C; Verzili D; Ilari A; Chiancone E
    Arch Biochem Biophys; 1997 Apr; 340(1):43-51. PubMed ID: 9126275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.