These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 16721879)

  • 41. Toxicity and mutagenicity of selenium compounds in Saccharomyces cerevisiae.
    Letavayová L; Vlasáková D; Spallholz JE; Brozmanová J; Chovanec M
    Mutat Res; 2008 Feb; 638(1-2):1-10. PubMed ID: 17900630
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mathematical model of the kinetics of growth of Saccharomyces cerevisiae.
    Peringer P; Blachere H; Corrieu G; Lane AG
    Biotechnol Bioeng Symp; 1973; 0(4-1):27-42. PubMed ID: 4606789
    [No Abstract]   [Full Text] [Related]  

  • 43. Update of potency factors for asbestos-related lung cancer and mesothelioma.
    Berman DW; Crump KS
    Crit Rev Toxicol; 2008; 38 Suppl 1():1-47. PubMed ID: 18671157
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Growth characteristics of Saccharomyces cerevisiae S288C in changing environmental conditions: auxo-accelerostat study.
    Kasemets K; Nisamedtinov I; Laht TM; Abner K; Paalme T
    Antonie Van Leeuwenhoek; 2007 Jul; 92(1):109-28. PubMed ID: 17268890
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interactive optical trapping shows that confinement is a determinant of growth in a mixed yeast culture.
    Arneborg N; Siegumfeldt H; Andersen GH; Nissen P; Daria VR; Rodrigo PJ; Glückstad J
    FEMS Microbiol Lett; 2005 Apr; 245(1):155-9. PubMed ID: 15796993
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of primary predictive models to study the growth of Listeria monocytogenes at low temperatures in liquid cultures and selection of fastest growing ribotypes in meat and turkey product slurries.
    Pal A; Labuza TP; Diez-Gonzalez F
    Food Microbiol; 2008 May; 25(3):460-70. PubMed ID: 18355671
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Discontinuity induced bifurcations in a model of Saccharomyces cerevisiae.
    Simpson DJ; Kompala DS; Meiss JD
    Math Biosci; 2009 Mar; 218(1):40-9. PubMed ID: 19162044
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modeling the effect of temperature on the growth rate and lag phase of Penicillium expansum in apples.
    Baert K; Valero A; De Meulenaer B; Samapundo S; Ahmed MM; Bo L; Debevere J; Devlieghere F
    Int J Food Microbiol; 2007 Sep; 118(2):139-50. PubMed ID: 17698233
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparative analysis of cell wall surface glycan expression in Candida albicans and Saccharomyces cerevisiae yeasts by flow cytometry.
    Martínez-Esparza M; Sarazin A; Jouy N; Poulain D; Jouault T
    J Immunol Methods; 2006 Jul; 314(1-2):90-102. PubMed ID: 16870206
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Response of Saccharomyces cerevisiae to lead ion stress.
    Chen C; Wang J
    Appl Microbiol Biotechnol; 2007 Mar; 74(3):683-7. PubMed ID: 17476503
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cadmium biosorption by Saccharomyces cerevisiae.
    Volesky B; May H; Holan ZR
    Biotechnol Bioeng; 1993 Apr; 41(8):826-9. PubMed ID: 18609627
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Response surface model for predicting chronic toxicity of cadmium to Paronychiurus kimi (Collembola), with a special emphasis on the importance of soil characteristics in the reproduction test.
    Son J; Shin KI; Cho K
    Chemosphere; 2009 Nov; 77(7):889-94. PubMed ID: 19783280
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The influence of colonial organization on thermotolerance and thermoresistance in Saccharomyces cerevisiae.
    Matmati N; Morpurgo G; Babudri N; Marini A
    J Basic Microbiol; 2002; 42(5):345-54. PubMed ID: 12362406
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Yeast genes involved in cadmium tolerance: Identification of DNA replication as a target of cadmium toxicity.
    Serero A; Lopes J; Nicolas A; Boiteux S
    DNA Repair (Amst); 2008 Aug; 7(8):1262-75. PubMed ID: 18514590
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inorganic polyphosphate and exopolyphosphatase in the nuclei of Saccharomyces cerevisiae: dependence on the growth phase and inactivation of the PPX1 and PPN1 genes.
    Lichko LP; Kulakovskaya TV; Kulaev IS
    Yeast; 2006 Jul; 23(10):735-40. PubMed ID: 16862600
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Stochastic modeling of S. cerevisiae inactivation by supercritical CO2.
    Spilimbergo S; Mantoan D
    Biotechnol Prog; 2005; 21(5):1461-5. PubMed ID: 16209551
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mathematical models of cell colonization of uniformly growing domains.
    Landman KA; Pettet GJ; Newgreen DF
    Bull Math Biol; 2003 Mar; 65(2):235-62. PubMed ID: 12675331
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effect of pulse electric field on accumulation of selenium in cells of Saccharomyces cerevisiae.
    Pankiewicz U; Jamroz J
    J Microbiol Biotechnol; 2007 Jul; 17(7):1139-46. PubMed ID: 18051325
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The roles of galactitol, galactose-1-phosphate, and phosphoglucomutase in galactose-induced toxicity in Saccharomyces cerevisiae.
    de Jongh WA; Bro C; Ostergaard S; Regenberg B; Olsson L; Nielsen J
    Biotechnol Bioeng; 2008 Oct; 101(2):317-26. PubMed ID: 18421797
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Role of Cu, Zn- and Mn-containing superoxide dismutases during the yeast Saccharomyces cerevisiae growing on ethanol and glycerol].
    Mandryk SIa; Lushchak OV; Semchyshyn HM; Lushchak VI
    Mikrobiol Z; 2007; 69(2):35-42. PubMed ID: 17494333
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.