These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 16722102)

  • 1. Optimal flow distribution over multiple parallel pellet reactors: a model-based approach.
    van Schagen KM; Babuska R; Rietveld LC; Baars ET
    Water Sci Technol; 2006; 53(4-5):493-501. PubMed ID: 16722102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial colonization of pellet softening reactors used during drinking water treatment.
    Hammes F; Boon N; Vital M; Ross P; Magic-Knezev A; Dignum M
    Appl Environ Microbiol; 2011 Feb; 77(3):1041-8. PubMed ID: 21148700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circular economy in drinking water treatment: reuse of ground pellets as seeding material in the pellet softening process.
    Schetters MJ; van der Hoek JP; Kramer OJ; Kors LJ; Palmen LJ; Hofs B; Koppers H
    Water Sci Technol; 2015; 71(4):479-86. PubMed ID: 25746637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model-based operational constraints for fluidised bed crystallisation.
    van Schagen KM; Rietveld LC; Babuska R; Kramer OJ
    Water Res; 2008 Jan; 42(1-2):327-37. PubMed ID: 17709125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cost-benefit analysis of central softening for production of drinking water.
    Van der Bruggen B; Goossens H; Everard PA; Stemgée K; Rogge W
    J Environ Manage; 2009; 91(2):541-9. PubMed ID: 19837505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of Chemical Crystallization Circulating Pellet Fluidized Beds for Softening and Saving Circulating Water in Thermal Power Plants.
    Hu R; Huang T; Wang T; Wang H; Long X
    Int J Environ Res Public Health; 2019 Nov; 16(22):. PubMed ID: 31752321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Softening of drinking water by the pellet reactor - Effects of influent water composition on calcium carbonate pellet characteristics.
    Tang C; Jørgensen Hedegaard M; Lopato L; Albrechtsen HJ
    Sci Total Environ; 2019 Feb; 652():538-548. PubMed ID: 30368183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A reactor model for pulsed pumping groundwater remediation.
    Tenney CM; Lastoskie CM; Dybas MJ
    Water Res; 2004 Nov; 38(18):3869-80. PubMed ID: 15380977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anaerobic treatment for C and S removal in "zero-discharge" paper mills: effects of process design on S removal efficiencies.
    van Lier JB; Lens PN; Pol LW
    Water Sci Technol; 2001; 44(4):189-95. PubMed ID: 11575084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Onsite defluoridation system for drinking water treatment using calcium carbonate.
    Wong EY; Stenstrom MK
    J Environ Manage; 2018 Jun; 216():270-274. PubMed ID: 28869054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the effects of hydrogenotrophic denitrification and anammox on the improvement of the quality of the drinking water supply system.
    Khanitchaidecha W; Koshy P; Kamei T; Shakya M; Kazama F
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(12):1533-42. PubMed ID: 23802162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Full-Scale Experimental Study of Groundwater Softening in a Circulating Pellet Fluidized Reactor.
    Hu R; Huang T; Zhi A; Tang Z
    Int J Environ Res Public Health; 2018 Jul; 15(8):. PubMed ID: 30060444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Particle size distribution dynamics during precipitative softening: declining solution composition.
    Nason JA; Lawler DF
    Water Res; 2009 Feb; 43(2):303-12. PubMed ID: 18976791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new post-treatment process for attaining Ca2+, Mg2+, SO42- and alkalinity criteria in desalinated water.
    Birnhack L; Lahav O
    Water Res; 2007 Sep; 41(17):3989-97. PubMed ID: 17618670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal design of zero-water discharge rinsing systems.
    Thöming J
    Environ Sci Technol; 2002 Mar; 36(5):1107-12. PubMed ID: 11917998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of phosphorus on biofilm disinfections in model drinking water distribution systems.
    Fang W; Hu J; Ong SL
    J Water Health; 2010 Sep; 8(3):446-54. PubMed ID: 20375474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methodological approach for the optimization of drinking water treatment plants' operation: a case study.
    Sorlini S; Collivignarelli MC; Castagnola F; Crotti BM; Raboni M
    Water Sci Technol; 2015; 71(4):597-604. PubMed ID: 25746653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Deactivation of titania whiskers used for purification of drinking water].
    Wen GF; Yang ZH; Li W; Feng X; Lu XH
    Huan Jing Ke Xue; 2007 Sep; 28(9):2025-9. PubMed ID: 17990551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of discontinuous chlorination on microbial production by drinking water biofilms.
    Codony F; Morató J; Mas J
    Water Res; 2005 May; 39(9):1896-906. PubMed ID: 15899288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The challenges of sustainable access to safe drinking water in rural areas of developing countries: case of Zawtar El-Charkieh, Southern Lebanon.
    Massoud MA; Al-Abady A; Jurdi M; Nuwayhid I
    J Environ Health; 2010 Jun; 72(10):24-30. PubMed ID: 20556940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.