BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 16722229)

  • 1. Molecular microfluorometry: converting arbitrary fluorescence units into absolute molecular concentrations to study binding kinetics and stoichiometry in transporters.
    Schwartz JW; Piston D; DeFelice LJ
    Handb Exp Pharmacol; 2006; (175):23-57. PubMed ID: 16722229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate binding stoichiometry and kinetics of the norepinephrine transporter.
    Schwartz JW; Novarino G; Piston DW; DeFelice LJ
    J Biol Chem; 2005 May; 280(19):19177-84. PubMed ID: 15757904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding and transport in norepinephrine transporters. Real-time, spatially resolved analysis in single cells using a fluorescent substrate.
    Schwartz JW; Blakely RD; DeFelice LJ
    J Biol Chem; 2003 Mar; 278(11):9768-77. PubMed ID: 12499385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell-type-specific expression of catecholamine transporters in the rat brain.
    Lorang D; Amara SG; Simerly RB
    J Neurosci; 1994 Aug; 14(8):4903-14. PubMed ID: 8046459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Handling of intracellular K
    Bhat S; Niello M; Schicker K; Pifl C; Sitte HH; Freissmuth M; Sandtner W
    Elife; 2021 Jun; 10():. PubMed ID: 34061030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of ligand binding kinetics on functional inhibition of human recombinant serotonin and norepinephrine transporters.
    Tsuruda PR; Yung J; Martin WJ; Chang R; Mai N; Smith JA
    J Pharmacol Toxicol Methods; 2010; 61(2):192-204. PubMed ID: 20036748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of a fluorescence-based high-throughput assay for the measurement of neurotransmitter transporter uptake activity.
    Jørgensen S; Nielsen EØ; Peters D; Dyhring T
    J Neurosci Methods; 2008 Mar; 169(1):168-76. PubMed ID: 18222006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic monitoring of NET activity in mature murine sympathetic terminals using a fluorescent substrate.
    Parker LK; Shanks JA; Kennard JA; Brain KL
    Br J Pharmacol; 2010 Feb; 159(4):797-807. PubMed ID: 20136837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A second extracellular site is required for norepinephrine transport by the human norepinephrine transporter.
    Wang CI; Shaikh NH; Ramu S; Lewis RJ
    Mol Pharmacol; 2012 Nov; 82(5):898-909. PubMed ID: 22874414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel fluorescence-based approaches for the study of biogenic amine transporter localization, activity, and regulation.
    Mason JN; Farmer H; Tomlinson ID; Schwartz JW; Savchenko V; DeFelice LJ; Rosenthal SJ; Blakely RD
    J Neurosci Methods; 2005 Apr; 143(1):3-25. PubMed ID: 15763132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biogenic amine flux mediated by cloned transporters stably expressed in cultured cell lines: amphetamine specificity for inhibition and efflux.
    Wall SC; Gu H; Rudnick G
    Mol Pharmacol; 1995 Mar; 47(3):544-50. PubMed ID: 7700252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Norepinephrine transport-mediated gene expression in noradrenergic neurogenesis.
    Hu YF; Caron MG; Sieber-Blum M
    BMC Genomics; 2009 Apr; 10():151. PubMed ID: 19356247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular cloning and characterization of an L-epinephrine transporter from sympathetic ganglia of the bullfrog, Rana catesbiana.
    Apparsundaram S; Moore KR; Malone MD; Hartzell HC; Blakely RD
    J Neurosci; 1997 Apr; 17(8):2691-702. PubMed ID: 9092590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput screening for norepinephrine transporter inhibitors using the FLIPRTetra.
    Wagstaff R; Hedrick M; Fan J; Crowe PD; DiSepio D
    J Biomol Screen; 2007 Apr; 12(3):436-41. PubMed ID: 17438071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning of dopamine, norepinephrine and serotonin transporters from monkey brain: relevance to cocaine sensitivity.
    Miller GM; Yatin SM; De La Garza R; Goulet M; Madras BK
    Brain Res Mol Brain Res; 2001 Feb; 87(1):124-43. PubMed ID: 11223167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patch-clamp and amperometric recordings from norepinephrine transporters: channel activity and voltage-dependent uptake.
    Galli A; Blakely RD; DeFelice LJ
    Proc Natl Acad Sci U S A; 1998 Oct; 95(22):13260-5. PubMed ID: 9789076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Further structural exploration of trisubstituted asymmetric pyran derivatives (2S,4R,5R)-2-benzhydryl-5-benzylamino-tetrahydropyran-4-ol and their corresponding disubstituted (3S,6S) pyran derivatives: a proposed pharmacophore model for high-affinity interaction with the dopamine, serotonin, and norepinephrine transporters.
    Zhang S; Fernandez F; Hazeldine S; Deschamps J; Zhen J; Reith ME; Dutta AK
    J Med Chem; 2006 Jul; 49(14):4239-47. PubMed ID: 16821783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the monoamine transporters from human and mouse in their sensitivities to psychostimulant drugs.
    Han DD; Gu HH
    BMC Pharmacol; 2006 Mar; 6():6. PubMed ID: 16515684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Norepinephrine transporters have channel modes of conduction.
    Galli A; Blakely RD; DeFelice LJ
    Proc Natl Acad Sci U S A; 1996 Aug; 93(16):8671-6. PubMed ID: 8710929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Further characterisation of the interaction of haloperidol metabolites with neurotransmitter transporters in rat neuronal cultures and in transfected COS-7 cells.
    Siebert GA; Pond SM; Bryan-Lluka LJ
    Naunyn Schmiedebergs Arch Pharmacol; 2000 Mar; 361(3):255-64. PubMed ID: 10731037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.