These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 16723006)

  • 1. PepDist: a new framework for protein-peptide binding prediction based on learning peptide distance functions.
    Hertz T; Yanover C
    BMC Bioinformatics; 2006 Mar; 7 Suppl 1(Suppl 1):S3. PubMed ID: 16723006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving MHC binding peptide prediction by incorporating binding data of auxiliary MHC molecules.
    Zhu S; Udaka K; Sidney J; Sette A; Aoki-Kinoshita KF; Mamitsuka H
    Bioinformatics; 2006 Jul; 22(13):1648-55. PubMed ID: 16613909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction.
    Nielsen M; Lund O
    BMC Bioinformatics; 2009 Sep; 10():296. PubMed ID: 19765293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MultiRTA: a simple yet reliable method for predicting peptide binding affinities for multiple class II MHC allotypes.
    Bordner AJ; Mittelmann HD
    BMC Bioinformatics; 2010 Sep; 11():482. PubMed ID: 20868497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting peptides binding to MHC class II molecules using multi-objective evolutionary algorithms.
    Rajapakse M; Schmidt B; Feng L; Brusic V
    BMC Bioinformatics; 2007 Nov; 8():459. PubMed ID: 18031584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural prediction of peptides binding to MHC class I molecules.
    Bui HH; Schiewe AJ; von Grafenstein H; Haworth IS
    Proteins; 2006 Apr; 63(1):43-52. PubMed ID: 16447245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptide length-based prediction of peptide-MHC class II binding.
    Chang ST; Ghosh D; Kirschner DE; Linderman JJ
    Bioinformatics; 2006 Nov; 22(22):2761-7. PubMed ID: 17000752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships.
    Hattotuwagama CK; Doytchinova IA; Flower DR
    Methods Mol Biol; 2007; 409():227-45. PubMed ID: 18450004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved prediction of MHC class I binders/non-binders peptides through artificial neural network using variable learning rate: SARS corona virus, a case study.
    Soam SS; Bhasker B; Mishra BN
    Adv Exp Med Biol; 2011; 696():223-9. PubMed ID: 21431562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction.
    Han Y; Kim D
    BMC Bioinformatics; 2017 Dec; 18(1):585. PubMed ID: 29281985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning MHC I--peptide binding.
    Jojic N; Reyes-Gomez M; Heckerman D; Kadie C; Schueler-Furman O
    Bioinformatics; 2006 Jul; 22(14):e227-35. PubMed ID: 16873476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method.
    Nielsen M; Lundegaard C; Lund O
    BMC Bioinformatics; 2007 Jul; 8():238. PubMed ID: 17608956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of MHC-binding peptides of flexible lengths from sequence-derived structural and physicochemical properties.
    Cui J; Han LY; Lin HH; Zhang HL; Tang ZQ; Zheng CJ; Cao ZW; Chen YZ
    Mol Immunol; 2007 Feb; 44(5):866-77. PubMed ID: 16806474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RBM-MHC: A Semi-Supervised Machine-Learning Method for Sample-Specific Prediction of Antigen Presentation by HLA-I Alleles.
    Bravi B; Tubiana J; Cocco S; Monasson R; Mora T; Walczak AM
    Cell Syst; 2021 Feb; 12(2):195-202.e9. PubMed ID: 33338400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing in silico protein-based vaccine discovery for eukaryotic pathogens using predicted peptide-MHC binding and peptide conservation scores.
    Goodswen SJ; Kennedy PJ; Ellis JT
    PLoS One; 2014; 9(12):e115745. PubMed ID: 25545691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning a peptide-protein binding affinity predictor with kernel ridge regression.
    Giguère S; Marchand M; Laviolette F; Drouin A; Corbeil J
    BMC Bioinformatics; 2013 Mar; 14():82. PubMed ID: 23497081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning pan-specific model for interpretable MHC-I peptide binding prediction with improved attention mechanism.
    Jin J; Liu Z; Nasiri A; Cui Y; Louis SY; Zhang A; Zhao Y; Hu J
    Proteins; 2021 Jul; 89(7):866-883. PubMed ID: 33594723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of peptides binding to MHC class I and II alleles by temporal motif mining.
    Meydan C; Otu HH; Sezerman OU
    BMC Bioinformatics; 2013; 14 Suppl 2(Suppl 2):S13. PubMed ID: 23368521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting MHC class I epitopes in large datasets.
    Roomp K; Antes I; Lengauer T
    BMC Bioinformatics; 2010 Feb; 11():90. PubMed ID: 20163709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the prediction of HLA class I-binding peptides using a supertype-based method.
    Wang S; Bai Z; Han J; Tian Y; Shang X; Wang L; Li J; Wu Y
    J Immunol Methods; 2014 Mar; 405():109-20. PubMed ID: 24508661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.