BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 16723008)

  • 1. A classification-based framework for predicting and analyzing gene regulatory response.
    Kundaje A; Middendorf M; Shah M; Wiggins CH; Freund Y; Leslie C
    BMC Bioinformatics; 2006 Mar; 7 Suppl 1(Suppl 1):S5. PubMed ID: 16723008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting genetic regulatory response using classification.
    Middendorf M; Kundaje A; Wiggins C; Freund Y; Leslie C
    Bioinformatics; 2004 Aug; 20 Suppl 1():i232-40. PubMed ID: 15262804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CAGER: classification analysis of gene expression regulation using multiple information sources.
    Ruan J; Zhang W
    BMC Bioinformatics; 2005 May; 6():114. PubMed ID: 15890068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An ensemble learning approach to reverse-engineering transcriptional regulatory networks from time-series gene expression data.
    Ruan J; Deng Y; Perkins EJ; Zhang W
    BMC Genomics; 2009 Jul; 10 Suppl 1(Suppl 1):S8. PubMed ID: 19594885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data.
    Gao F; Foat BC; Bussemaker HJ
    BMC Bioinformatics; 2004 Mar; 5():31. PubMed ID: 15113405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulatory motif finding by logic regression.
    Keles S; van der Laan MJ; Vulpe C
    Bioinformatics; 2004 Nov; 20(16):2799-811. PubMed ID: 15166027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using local gene expression similarities to discover regulatory binding site modules.
    WilczyƄski B; Hvidsten TR; Kryshtafovych A; Tiuryn J; Komorowski J; Fidelis K
    BMC Bioinformatics; 2006 Nov; 7():505. PubMed ID: 17109764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properly defining the targets of a transcription factor significantly improves the computational identification of cooperative transcription factor pairs in yeast.
    Wu WS; Lai FJ
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S10. PubMed ID: 26679776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A predictive model of the oxygen and heme regulatory network in yeast.
    Kundaje A; Xin X; Lan C; Lianoglou S; Zhou M; Zhang L; Leslie C
    PLoS Comput Biol; 2008 Nov; 4(11):e1000224. PubMed ID: 19008939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A bi-dimensional regression tree approach to the modeling of gene expression regulation.
    Ruan J; Zhang W
    Bioinformatics; 2006 Feb; 22(3):332-40. PubMed ID: 16303796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining sequence and time series expression data to learn transcriptional modules.
    Kundaje A; Middendorf M; Gao F; Wiggins C; Leslie C
    IEEE/ACM Trans Comput Biol Bioinform; 2005; 2(3):194-202. PubMed ID: 17044183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Gibbs sampler for the identification of gene expression and network connectivity consistency.
    Brynildsen MP; Tran LM; Liao JC
    Bioinformatics; 2006 Dec; 22(24):3040-6. PubMed ID: 17060361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative inference of dynamic regulatory pathways via microarray data.
    Chang WC; Li CW; Chen BS
    BMC Bioinformatics; 2005 Mar; 6():44. PubMed ID: 15748298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An algorithm for finding protein-DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments.
    Liu XS; Brutlag DL; Liu JS
    Nat Biotechnol; 2002 Aug; 20(8):835-9. PubMed ID: 12101404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. W-AlignACE: an improved Gibbs sampling algorithm based on more accurate position weight matrices learned from sequence and gene expression/ChIP-chip data.
    Chen X; Guo L; Fan Z; Jiang T
    Bioinformatics; 2008 May; 24(9):1121-8. PubMed ID: 18325926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning regulatory programs that accurately predict differential expression with MEDUSA.
    Kundaje A; Lianoglou S; Li X; Quigley D; Arias M; Wiggins CH; Zhang L; Leslie C
    Ann N Y Acad Sci; 2007 Dec; 1115():178-202. PubMed ID: 17934055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microarray data mining using landmark gene-guided clustering.
    Chopra P; Kang J; Yang J; Cho H; Kim HS; Lee MG
    BMC Bioinformatics; 2008 Feb; 9():92. PubMed ID: 18267003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Monte Carlo-based framework enhances the discovery and interpretation of regulatory sequence motifs.
    Seitzer P; Wilbanks EG; Larsen DJ; Facciotti MT
    BMC Bioinformatics; 2012 Nov; 13():317. PubMed ID: 23181585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Background rareness-based iterative multiple sequence alignment algorithm for regulatory element detection.
    Narasimhan C; LoCascio P; Uberbacher E
    Bioinformatics; 2003 Oct; 19(15):1952-63. PubMed ID: 14555629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide prediction of transcriptional regulatory elements of human promoters using gene expression and promoter analysis data.
    Kim SY; Kim Y
    BMC Bioinformatics; 2006 Jul; 7():330. PubMed ID: 16817975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.