BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

717 related articles for article (PubMed ID: 16723033)

  • 1. The gain and loss of genes during 600 million years of vertebrate evolution.
    Blomme T; Vandepoele K; De Bodt S; Simillion C; Maere S; Van de Peer Y
    Genome Biol; 2006; 7(5):R43. PubMed ID: 16723033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of gene gains, losses and duplication modes on the origin and diversification of vertebrates.
    Cañestro C; Albalat R; Irimia M; Garcia-Fernàndez J
    Semin Cell Dev Biol; 2013 Feb; 24(2):83-94. PubMed ID: 23291262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The endothelin system: evolution of vertebrate-specific ligand-receptor interactions by three rounds of genome duplication.
    Braasch I; Volff JN; Schartl M
    Mol Biol Evol; 2009 Apr; 26(4):783-99. PubMed ID: 19174480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative genomics of ParaHox clusters of teleost fishes: gene cluster breakup and the retention of gene sets following whole genome duplications.
    Siegel N; Hoegg S; Salzburger W; Braasch I; Meyer A
    BMC Genomics; 2007 Sep; 8():312. PubMed ID: 17822543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of pigment synthesis pathways by gene and genome duplication in fish.
    Braasch I; Schartl M; Volff JN
    BMC Evol Biol; 2007 May; 7():74. PubMed ID: 17498288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel evolution of amphioxus and vertebrate small-scale gene duplications.
    Brasó-Vives M; Marlétaz F; Echchiki A; Mantica F; Acemel RD; Gómez-Skarmeta JL; Hartasánchez DA; Le Targa L; Pontarotti P; Tena JJ; Maeso I; Escriva H; Irimia M; Robinson-Rechavi M
    Genome Biol; 2022 Nov; 23(1):243. PubMed ID: 36401278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromosome evolution at the origin of the ancestral vertebrate genome.
    Sacerdot C; Louis A; Bon C; Berthelot C; Roest Crollius H
    Genome Biol; 2018 Oct; 19(1):166. PubMed ID: 30333059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective Constraints on Coding Sequences of Nervous System Genes Are a Major Determinant of Duplicate Gene Retention in Vertebrates.
    Roux J; Liu J; Robinson-Rechavi M
    Mol Biol Evol; 2017 Nov; 34(11):2773-2791. PubMed ID: 28981708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two rounds of whole genome duplication in the ancestral vertebrate.
    Dehal P; Boore JL
    PLoS Biol; 2005 Oct; 3(10):e314. PubMed ID: 16128622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of gene function and regulatory control after whole-genome duplication: comparative analyses in vertebrates.
    Kassahn KS; Dang VT; Wilkins SJ; Perkins AC; Ragan MA
    Genome Res; 2009 Aug; 19(8):1404-18. PubMed ID: 19439512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New evidence for genome-wide duplications at the origin of vertebrates using an amphioxus gene set and completed animal genomes.
    Panopoulou G; Hennig S; Groth D; Krause A; Poustka AJ; Herwig R; Vingron M; Lehrach H
    Genome Res; 2003 Jun; 13(6A):1056-66. PubMed ID: 12799346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age distribution of human gene families shows significant roles of both large- and small-scale duplications in vertebrate evolution.
    Gu X; Wang Y; Gu J
    Nat Genet; 2002 Jun; 31(2):205-9. PubMed ID: 12032571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phylogenetic analyses alone are insufficient to determine whether genome duplication(s) occurred during early vertebrate evolution.
    Horton AC; Mahadevan NR; Ruvinsky I; Gibson-Brown JJ
    J Exp Zool B Mol Dev Evol; 2003 Oct; 299(1):41-53. PubMed ID: 14508816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Whole Genome Duplications Shaped the Receptor Tyrosine Kinase Repertoire of Jawed Vertebrates.
    Brunet FG; Volff JN; Schartl M
    Genome Biol Evol; 2016 Jun; 8(5):1600-13. PubMed ID: 27260203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogenetic dating and characterization of gene duplications in vertebrates: the cartilaginous fish reference.
    Robinson-Rechavi M; Boussau B; Laudet V
    Mol Biol Evol; 2004 Mar; 21(3):580-6. PubMed ID: 14694077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary history of the human multigene families reveals widespread gene duplications throughout the history of animals.
    Pervaiz N; Shakeel N; Qasim A; Zehra R; Anwar S; Rana N; Xue Y; Zhang Z; Bao Y; Abbasi AA
    BMC Evol Biol; 2019 Jun; 19(1):128. PubMed ID: 31221090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence of en bloc duplication in vertebrate genomes.
    Abi-Rached L; Gilles A; Shiina T; Pontarotti P; Inoko H
    Nat Genet; 2002 May; 31(1):100-5. PubMed ID: 11967531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene loss and evolutionary rates following whole-genome duplication in teleost fishes.
    Brunet FG; Roest Crollius H; Paris M; Aury JM; Gibert P; Jaillon O; Laudet V; Robinson-Rechavi M
    Mol Biol Evol; 2006 Sep; 23(9):1808-16. PubMed ID: 16809621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of vertebrate opioid receptors.
    Dreborg S; Sundström G; Larsson TA; Larhammar D
    Proc Natl Acad Sci U S A; 2008 Oct; 105(40):15487-92. PubMed ID: 18832151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene duplication and the uniqueness of vertebrate genomes circa 1970-1999.
    Ohno S
    Semin Cell Dev Biol; 1999 Oct; 10(5):517-22. PubMed ID: 10597635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.