These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 16723218)

  • 1. On-line detection of metal pollutant spikes in MSW incinerator flue gases prior to clean-up.
    Poole D; Sharifi V; Swithenbank J; Argent B; Ardelt D
    Waste Manag; 2007; 27(4):519-32. PubMed ID: 16723218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Volatilization of heavy metals during incineration of municipal solid wastes.
    Lu-shi S; Abanades S; Lu JD; Flamant G; Gauthier D
    J Environ Sci (China); 2004; 16(4):635-9. PubMed ID: 15495971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Volatilization behavior of Cd and Zn based on continuous emission measurement of flue gas from laboratory-scale coal combustion.
    Liu J; Falcoz Q; Gauthier D; Flamant G; Zheng CZ
    Chemosphere; 2010 Jun; 80(3):241-7. PubMed ID: 20457467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Partition and size distribution of heavy metals in the flue gas from municipal solid waste incinerators in Taiwan.
    Yuan CS; Lin HY; Wu CH; Liu MH
    Chemosphere; 2005 Mar; 59(1):135-45. PubMed ID: 15698654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring metals near a hazardous waste incinerator. Temporal trend in soils and herbage.
    Ferré-Huguet N; Nadal M; Mari M; Schuhmacher M; Borrajo MA; Domingo JL
    Bull Environ Contam Toxicol; 2007 Aug; 79(2):130-4. PubMed ID: 17492387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of moisture on volatility of heavy metals in municipal solid waste incinerated in a laboratory scale simulated incinerator.
    Youcai Z; Stucki S; Ludwig Ch; Wochele J
    Waste Manag; 2004; 24(6):581-7. PubMed ID: 15219916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emissions investigation for a novel medical waste incinerator.
    Xie R; Li WJ; Li J; Wu BL; Yi JQ
    J Hazard Mater; 2009 Jul; 166(1):365-71. PubMed ID: 19111396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of air pollution control residues of MSW incineration plant in Shanghai.
    He PJ; Zhang H; Zhang CG; Lee DJ
    J Hazard Mater; 2004 Dec; 116(3):229-37. PubMed ID: 15601616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The study on biomass fraction estimate methodology of municipal solid waste incinerator in Korea.
    Kang S; Kim S; Lee J; Yun H; Kim KH; Jeon EC
    J Air Waste Manag Assoc; 2016 Oct; 66(10):971-7. PubMed ID: 27191178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental research on emission and removal of dioxins in flue gas from a co-combustion of MSW and coal incinerator.
    Zhong Z; Jin B; Huang Y; Zhou H; Lan J
    Waste Manag; 2006; 26(6):580-6. PubMed ID: 16054809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of air pollution control residues produced in a municipal solid waste incinerator in Portugal.
    Quina MJ; Santos RC; Bordado JC; Quinta-Ferreira RM
    J Hazard Mater; 2008 Apr; 152(2):853-69. PubMed ID: 17728059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heavy metal vaporization and abatement during thermal treatment of modified wastes.
    Rio S; Verwilghen C; Ramaroson J; Nzihou A; Sharrock P
    J Hazard Mater; 2007 Sep; 148(3):521-8. PubMed ID: 17467894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of elements in waste ashes from a solid waste incinerator in Taiwan.
    Chang CY; Wang CF; Mui DT; Cheng MT; Chiang HL
    J Hazard Mater; 2009 Jun; 165(1-3):766-73. PubMed ID: 19046804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tools for evaluation of impact associated with MSW incineration: LCA and integrated environmental monitoring system.
    Morselli L; Bartoli M; Bertacchini M; Brighetti A; Luzi J; Passarini F; Masoni P
    Waste Manag; 2005; 25(2):191-6. PubMed ID: 15737717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The environmental fate of heavy metals arising from a MSW incineration plant.
    Morselli L; Passarini F; Bartoli M
    Waste Manag; 2002; 22(8):875-81. PubMed ID: 12423048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The benefits of flue gas recirculation in waste incineration.
    Liuzzo G; Verdone N; Bravi M
    Waste Manag; 2007; 27(1):106-16. PubMed ID: 16516458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MSW oxy-enriched incineration technology applied in China: combustion temperature, flue gas loss and economic considerations.
    Fu Z; Zhang S; Li X; Shao J; Wang K; Chen H
    Waste Manag; 2015 Apr; 38():149-56. PubMed ID: 25680237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sampling technologies and air pollution control devices for gaseous and particulate arsenic: a review.
    Helsen L
    Environ Pollut; 2005 Sep; 137(2):305-15. PubMed ID: 15963370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The analysis of flue gas treatment residues using non-destructive X-ray fluorescence as a regulatory compliance test.
    Robertson D; Barratt RS; Burnley SJ; Webb P; Watson JS
    J Environ Monit; 2005 May; 7(5):416-8. PubMed ID: 15877160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a simple extraction cell with bi-directional continuous flow coupled on-line to ICP-MS for assessment of elemental associations in solid samples.
    Buanuam J; Tiptanasup K; Shiowatana J; Miró M; Harald Hansen E
    J Environ Monit; 2006 Dec; 8(12):1248-54. PubMed ID: 17133282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.