These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 16723491)
41. COUP-TFI and -TFII nuclear receptors are expressed in amacrine cells and play roles in regulating the differentiation of retinal progenitor cells. Inoue M; Iida A; Satoh S; Kodama T; Watanabe S Exp Eye Res; 2010 Jan; 90(1):49-56. PubMed ID: 19766631 [TBL] [Abstract][Full Text] [Related]
42. Ablation of persephin receptor glial cell line-derived neurotrophic factor family receptor alpha4 impairs thyroid calcitonin production in young mice. Lindfors PH; Lindahl M; Rossi J; Saarma M; Airaksinen MS Endocrinology; 2006 May; 147(5):2237-44. PubMed ID: 16497798 [TBL] [Abstract][Full Text] [Related]
43. Brn-3b inhibits generation of amacrine cells by binding to and negatively regulating DLX1/2 in developing retina. Feng L; Eisenstat DD; Chiba S; Ishizaki Y; Gan L; Shibasaki K Neuroscience; 2011 Nov; 195():9-20. PubMed ID: 21875655 [TBL] [Abstract][Full Text] [Related]
44. Expression of mRNA for glutamate receptor subunits distinguishes the major classes of retinal neurons, but is less specific for individual cell types. Jakobs TC; Ben Y; Masland RH Mol Vis; 2007 Jun; 13():933-48. PubMed ID: 17653033 [TBL] [Abstract][Full Text] [Related]
45. Early identification of retinal subtypes in the developing, pre-laminated chick retina using the transcription factors Prox1, Lim1, Ap2alpha, Pax6, Isl1, Isl2, Lim3 and Chx10. Edqvist PH; Myers SM; Hallböök F Eur J Histochem; 2006; 50(2):147-54. PubMed ID: 16864127 [TBL] [Abstract][Full Text] [Related]
46. The role of VEGF and VEGFR2/Flk1 in proliferation of retinal progenitor cells in murine retinal degeneration. Nishiguchi KM; Nakamura M; Kaneko H; Kachi S; Terasaki H Invest Ophthalmol Vis Sci; 2007 Sep; 48(9):4315-20. PubMed ID: 17724222 [TBL] [Abstract][Full Text] [Related]
47. Tfap2a and 2b act downstream of Ptf1a to promote amacrine cell differentiation during retinogenesis. Jin K; Jiang H; Xiao D; Zou M; Zhu J; Xiang M Mol Brain; 2015 May; 8():28. PubMed ID: 25966682 [TBL] [Abstract][Full Text] [Related]
48. Quantitative estimation of RNA transcripts suggests persistence of Pax-6 expression in the postembryonic chick retina. Bhat SP; Rayner SA; Huang CM; Ariyasu RG Dev Neurosci; 1999; 21(2):140-6. PubMed ID: 10449986 [TBL] [Abstract][Full Text] [Related]
49. GDNF regulates chicken rod photoreceptor development and survival in reaggregated histotypic retinal spheres. Rothermel A; Layer PG Invest Ophthalmol Vis Sci; 2003 May; 44(5):2221-8. PubMed ID: 12714664 [TBL] [Abstract][Full Text] [Related]
50. Effects of high salt-exposure on the development of retina and lens in 5.5-day chick embryo. Chen Y; Wang G; Wang XY; Ma ZL; Chen YP; Chuai M; von Websky K; Hocher B; Yang X Cell Physiol Biochem; 2014; 34(3):804-17. PubMed ID: 25170993 [TBL] [Abstract][Full Text] [Related]
51. Forced expression of the motor neuron determinant HB9 in neural stem cells affects neurogenesis. Bréjot T; Blanchard S; Hocquemiller M; Haase G; Liu S; Nosjean A; Heard JM; Bohl D Exp Neurol; 2006 Mar; 198(1):167-82. PubMed ID: 16434037 [TBL] [Abstract][Full Text] [Related]
52. Evolution of eyes and photoreceptor cell types. Arendt D Int J Dev Biol; 2003; 47(7-8):563-71. PubMed ID: 14756332 [TBL] [Abstract][Full Text] [Related]
53. Spatiotemporal expression patterns of N-syndecan, a transmembrane heparan sulfate proteoglycan, in developing retina. Inatani M; Honjo M; Oohira A; Kido N; Otori Y; Tano Y; Honda Y; Tanihara H Invest Ophthalmol Vis Sci; 2002 May; 43(5):1616-21. PubMed ID: 11980882 [TBL] [Abstract][Full Text] [Related]
54. Mechanisms controlling Pax6 isoform expression in the retina have been conserved between teleosts and mammals. Lakowski J; Majumder A; Lauderdale JD Dev Biol; 2007 Jul; 307(2):498-520. PubMed ID: 17509554 [TBL] [Abstract][Full Text] [Related]
55. BARHL2 differentially regulates the development of retinal amacrine and ganglion neurons. Ding Q; Chen H; Xie X; Libby RT; Tian N; Gan L J Neurosci; 2009 Apr; 29(13):3992-4003. PubMed ID: 19339595 [TBL] [Abstract][Full Text] [Related]
56. Mechanisms for persistent microphthalmia following ethanol exposure during retinal neurogenesis in zebrafish embryos. Kashyap B; Frederickson LC; Stenkamp DL Vis Neurosci; 2007; 24(3):409-21. PubMed ID: 17640445 [TBL] [Abstract][Full Text] [Related]
57. Down regulation of pRb in cultures of avian neuroretina cells promotes proliferation of reactive Müller-like cells and emergence of retinal stem/progenitors. Marx M; Lebuhotel C; Laugier D; Chapelle A; Calothy G; Saule S Exp Eye Res; 2010 Jun; 90(6):791-801. PubMed ID: 20380833 [TBL] [Abstract][Full Text] [Related]
58. Trophic factors and neuronal interactions regulate the cell cycle and Pax6 expression in Müller stem cells. Insua MF; Simón MV; Garelli A; de Los Santos B; Rotstein NP; Politi LE J Neurosci Res; 2008 May; 86(7):1459-71. PubMed ID: 18189319 [TBL] [Abstract][Full Text] [Related]
59. Expression of Pax-6 mRNA in the retinal degeneration (rd) mouse. Jones SE; Jomary C; Grist J; Thomas MR; Neal MJ Biochem Biophys Res Commun; 1998 Nov; 252(1):236-40. PubMed ID: 9813176 [TBL] [Abstract][Full Text] [Related]
60. Cellular responses to photoreceptor death in the rd1 mouse model of retinal degeneration. Punzo C; Cepko C Invest Ophthalmol Vis Sci; 2007 Feb; 48(2):849-57. PubMed ID: 17251487 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]