BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 16723543)

  • 21. Axonal guidance during development of the great cerebral commissures: descriptive and experimental studies, in vivo, on the role of preformed glial pathways.
    Silver J; Lorenz SE; Wahlsten D; Coughlin J
    J Comp Neurol; 1982 Sep; 210(1):10-29. PubMed ID: 7130467
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiple Slits regulate the development of midline glial populations and the corpus callosum.
    Unni DK; Piper M; Moldrich RX; Gobius I; Liu S; Fothergill T; Donahoo AL; Baisden JM; Cooper HM; Richards LJ
    Dev Biol; 2012 May; 365(1):36-49. PubMed ID: 22349628
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wnt5a regulates midbrain dopaminergic axon growth and guidance.
    Blakely BD; Bye CR; Fernando CV; Horne MK; Macheda ML; Stacker SA; Arenas E; Parish CL
    PLoS One; 2011 Mar; 6(3):e18373. PubMed ID: 21483795
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A role for cingulate pioneering axons in the development of the corpus callosum.
    Rash BG; Richards LJ
    J Comp Neurol; 2001 May; 434(2):147-57. PubMed ID: 11331522
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ryk-mediated Wnt repulsion regulates posterior-directed growth of corticospinal tract.
    Liu Y; Shi J; Lu CC; Wang ZB; Lyuksyutova AI; Song XJ; Zou Y
    Nat Neurosci; 2005 Sep; 8(9):1151-9. PubMed ID: 16116452
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Axon guidance at the midline choice point.
    Kaprielian Z; Runko E; Imondi R
    Dev Dyn; 2001 Jun; 221(2):154-81. PubMed ID: 11376484
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Drosophila Wnt5 protein mediates selective axon fasciculation in the embryonic central nervous system.
    Fradkin LG; van Schie M; Wouda RR; de Jong A; Kamphorst JT; Radjkoemar-Bansraj M; Noordermeer JN
    Dev Biol; 2004 Aug; 272(2):362-75. PubMed ID: 15282154
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Netrin-DCC signaling regulates corpus callosum formation through attraction of pioneering axons and by modulating Slit2-mediated repulsion.
    Fothergill T; Donahoo AL; Douglass A; Zalucki O; Yuan J; Shu T; Goodhill GJ; Richards LJ
    Cereb Cortex; 2014 May; 24(5):1138-51. PubMed ID: 23302812
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Disruption of Esrom and Ryk identifies the roof plate boundary as an intermediate target for commissure formation.
    Hendricks M; Mathuru AS; Wang H; Silander O; Kee MZ; Jesuthasan S
    Mol Cell Neurosci; 2008 Feb; 37(2):271-83. PubMed ID: 18060805
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ROR and RYK extracellular region structures suggest that receptor tyrosine kinases have distinct WNT-recognition modes.
    Shi F; Mendrola JM; Sheetz JB; Wu N; Sommer A; Speer KF; Noordermeer JN; Kan ZY; Perry K; Englander SW; Stayrook SE; Fradkin LG; Lemmon MA
    Cell Rep; 2021 Oct; 37(3):109834. PubMed ID: 34686333
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sek4 and Nuk receptors cooperate in guidance of commissural axons and in palate formation.
    Orioli D; Henkemeyer M; Lemke G; Klein R; Pawson T
    EMBO J; 1996 Nov; 15(22):6035-49. PubMed ID: 8947026
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Timing and origin of the first cortical axons to project through the corpus callosum and the subsequent emergence of callosal projection cells in mouse.
    Ozaki HS; Wahlsten D
    J Comp Neurol; 1998 Oct; 400(2):197-206. PubMed ID: 9766399
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Axonal pathfinding mechanisms at the cortical midline and in the development of the corpus callosum.
    Richards LJ
    Braz J Med Biol Res; 2002 Dec; 35(12):1431-9. PubMed ID: 12436186
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Imaging, anatomical, and molecular analysis of callosal formation in the developing human fetal brain.
    Ren T; Anderson A; Shen WB; Huang H; Plachez C; Zhang J; Mori S; Kinsman SL; Richards LJ
    Anat Rec A Discov Mol Cell Evol Biol; 2006 Feb; 288(2):191-204. PubMed ID: 16411247
    [TBL] [Abstract][Full Text] [Related]  

  • 35. WNT5 interacts with the Ryk receptors doughnut and derailed to mediate muscle attachment site selection in Drosophila melanogaster.
    Lahaye LL; Wouda RR; de Jong AW; Fradkin LG; Noordermeer JN
    PLoS One; 2012; 7(3):e32297. PubMed ID: 22403643
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The autophagy-inducing kinases, ULK1 and ULK2, regulate axon guidance in the developing mouse forebrain via a noncanonical pathway.
    Wang B; Iyengar R; Li-Harms X; Joo JH; Wright C; Lavado A; Horner L; Yang M; Guan JL; Frase S; Green DR; Cao X; Kundu M
    Autophagy; 2018; 14(5):796-811. PubMed ID: 29099309
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wnt5a regulates hematopoietic stem cell proliferation and repopulation through the Ryk receptor.
    Povinelli BJ; Nemeth MJ
    Stem Cells; 2014 Jan; 32(1):105-15. PubMed ID: 23939973
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wnt5a, Ryk and Ror2 expression in glioblastoma subgroups.
    Kim Y; Hong M; Do IG; Ha SY; Lee D; Suh YL
    Pathol Res Pract; 2015 Dec; 211(12):963-72. PubMed ID: 26596412
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interplay between axonal Wnt5-Vang and dendritic Wnt5-Drl/Ryk signaling controls glomerular patterning in the Drosophila antennal lobe.
    Hing H; Reger N; Snyder J; Fradkin LG
    PLoS Genet; 2020 May; 16(5):e1008767. PubMed ID: 32357156
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiple non-cell-autonomous defects underlie neocortical callosal dysgenesis in Nfib-deficient mice.
    Piper M; Moldrich RX; Lindwall C; Little E; Barry G; Mason S; Sunn N; Kurniawan ND; Gronostajski RM; Richards LJ
    Neural Dev; 2009 Dec; 4():43. PubMed ID: 19961580
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.