BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 16723578)

  • 1. Functional, biophysical, and structural bases for antibacterial activity of tigecycline.
    Olson MW; Ruzin A; Feyfant E; Rush TS; O'Connell J; Bradford PA
    Antimicrob Agents Chemother; 2006 Jun; 50(6):2156-66. PubMed ID: 16723578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural characterization of an alternative mode of tigecycline binding to the bacterial ribosome.
    Schedlbauer A; Kaminishi T; Ochoa-Lizarralde B; Dhimole N; Zhou S; López-Alonso JP; Connell SR; Fucini P
    Antimicrob Agents Chemother; 2015 May; 59(5):2849-54. PubMed ID: 25753625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis for potent inhibitory activity of the antibiotic tigecycline during protein synthesis.
    Jenner L; Starosta AL; Terry DS; Mikolajka A; Filonava L; Yusupov M; Blanchard SC; Wilson DN; Yusupova G
    Proc Natl Acad Sci U S A; 2013 Mar; 110(10):3812-6. PubMed ID: 23431179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of tetracycline and tigecycline binding to ribosomes mapped by dimethylsulphate and drug-directed Fe2+ cleavage of 16S rRNA.
    Bauer G; Berens C; Projan SJ; Hillen W
    J Antimicrob Chemother; 2004 Apr; 53(4):592-9. PubMed ID: 14985271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tigecycline is modified by the flavin-dependent monooxygenase TetX.
    Moore IF; Hughes DW; Wright GD
    Biochemistry; 2005 Sep; 44(35):11829-35. PubMed ID: 16128584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Putative dioxygen-binding sites and recognition of tigecycline and minocycline in the tetracycline-degrading monooxygenase TetX.
    Volkers G; Damas JM; Palm GJ; Panjikar S; Soares CM; Hinrichs W
    Acta Crystallogr D Biol Crystallogr; 2013 Sep; 69(Pt 9):1758-67. PubMed ID: 23999299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tigecycline - how powerful is it in the fight against antibiotic-resistant bacteria?
    Seputiene V; Povilonis J; Armalyte J; Suziedelis K; Pavilonis A; Suziedeliene E
    Medicina (Kaunas); 2010; 46(4):240-8. PubMed ID: 20571291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Negamycin induces translational stalling and miscoding by binding to the small subunit head domain of the Escherichia coli ribosome.
    Olivier NB; Altman RB; Noeske J; Basarab GS; Code E; Ferguson AD; Gao N; Huang J; Juette MF; Livchak S; Miller MD; Prince DB; Cate JH; Buurman ET; Blanchard SC
    Proc Natl Acad Sci U S A; 2014 Nov; 111(46):16274-9. PubMed ID: 25368144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review of tigecycline--the first glycylcycline.
    Peterson LR
    Int J Antimicrob Agents; 2008 Dec; 32 Suppl 4():S215-22. PubMed ID: 19134522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity of tigecycline tested against a global collection of Enterobacteriaceae, including tetracycline-resistant isolates.
    Fritsche TR; Strabala PA; Sader HS; Dowzicky MJ; Jones RN
    Diagn Microbiol Infect Dis; 2005 Jul; 52(3):209-13. PubMed ID: 16105566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tigecycline: a new glycylcycline for treatment of serious infections.
    Noskin GA
    Clin Infect Dis; 2005 Sep; 41 Suppl 5():S303-14. PubMed ID: 16080069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Establishing the role of tigecycline in an era of antimicrobial resistance.
    Schafer JJ; Goff DA
    Expert Rev Anti Infect Ther; 2008 Oct; 6(5):557-67. PubMed ID: 18847395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of in vitro activities of tigecycline, doxycycline, and tetracycline against the spirochete Borrelia burgdorferi.
    Ates L; Hanssen-Hübner C; Norris DE; Richter D; Kraiczy P; Hunfeld KP
    Ticks Tick Borne Dis; 2010 Mar; 1(1):30-4. PubMed ID: 21771509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induced tigecycline resistance in Streptococcus pneumoniae mutants reveals mutations in ribosomal proteins and rRNA.
    Lupien A; Gingras H; Leprohon P; Ouellette M
    J Antimicrob Chemother; 2015 Nov; 70(11):2973-80. PubMed ID: 26183184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Presence of tetracycline resistance determinants and susceptibility to tigecycline and minocycline.
    Fluit AC; Florijn A; Verhoef J; Milatovic D
    Antimicrob Agents Chemother; 2005 Apr; 49(4):1636-8. PubMed ID: 15793159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tigecycline: first of a new class of antimicrobial agents.
    Rose WE; Rybak MJ
    Pharmacotherapy; 2006 Aug; 26(8):1099-110. PubMed ID: 16863487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antimalarial activity of tigecycline, a novel glycylcycline antibiotic.
    Starzengruber P; Thriemer K; Haque R; Khan WA; Fuehrer HP; Siedl A; Hofecker V; Ley B; Wernsdorfer WH; Noedl H
    Antimicrob Agents Chemother; 2009 Sep; 53(9):4040-2. PubMed ID: 19596882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit.
    Brodersen DE; Clemons WM; Carter AP; Morgan-Warren RJ; Wimberly BT; Ramakrishnan V
    Cell; 2000 Dec; 103(7):1143-54. PubMed ID: 11163189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tigecycline: a critical analysis.
    Stein GE; Craig WA
    Clin Infect Dis; 2006 Aug; 43(4):518-24. PubMed ID: 16838243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tigecycline: what is it, and where should it be used?
    Livermore DM
    J Antimicrob Chemother; 2005 Oct; 56(4):611-4. PubMed ID: 16120626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.